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Abstract

Numerical nonlinear algebra is concerned with the development of numerical methods to
solve problems in nonlinear algebra. The main computational task is the solution of systems
of polynomial equations. In this thesis, we focus on the numerical solution of polynomial
systems using homotopy continuation methods.

We apply techniques from numerical analysis to obtain a mixed-precision path track-
ing algorithm specifically designed for the application in polynomial homotopy continuation
methods. This algorithm uses an adaptive step size control that builds on a local under-
standing of the region of convergence of Newton’s method and the distance to the closest
singularity.

Important for the use of numerical nonlinear algebra in mathematical proofs is the possi-
bility to certify that the computed approximate solutions of a polynomial system correspond
to true (distinct) solutions of the system. We present a new certification routine based on
interval arithmetic and Krawczyk’s method that outperforms the state of the art by multiple
orders of magnitude.

We also demonstrate numerical nonlinear on a range of applications. To illustrate tools
and techniques from numerical nonlinear algebra, we consider Steiner’s conic problem and
give the first fully real instance of Steiner’s conic problem using a computer-assisted proof.
We study the action of the projective linear group on cubic surfaces. In particular, we compute
the degree of the projective variety given by the Zariski closure of the orbit of a general cubic
surface. We also consider the maximum likelihood estimation problem for Gaussian models
whose covariance matrices lie in a given linear space. Using numerical nonlinear algebra, we
compute the ML degree and dual ML degree for various models of linear covariance matrices.
Another application is the study from tensegrity frameworks made from rigid bars and elastic
cables, depending on many parameters. We use numerical nonlinear algebra to sample the
semi-algebraic catastrophe set which characterizes a region of the parameter space that can
trigger sudden large-scale shape changes.

Finally, we present the software package HomotopyContinuation.jl for the numerical
solution of polynomial systems. We describe its functionality, share some of its design and
implementation details and demonstrate its impact on the broader research community.





Zusammenfassung

Numerische nichtlineare Algebra beschäftigt sich mit der Entwicklung von numerischen
Methoden zur Lösung von Problemen in der nichtlinearen Algebra. In der nichtlinearen
Algebra ist die zentrale Berechnungsaufgabe das Lösen von System von polynomiellen Gle-
ichungen ist. In dieser Dissertation fokussieren wir uns auf das Lösen von Polynomsystem
mittels Homotopie-Fortsetzungsverfahren.

Wir wenden Techniken aus der numerischen Analysis an, um einen gemischte Präzi-
sion Pfadverfolgungsalgorithmus zu erhalten, der speziell für die Anforderungen von poly-
nomiellen Homotopie-Fortsetzungsverfahren gestaltet ist. Dieser Algorithmus nutzt eine
adaptive Schrittweitensteuerung, welche auf einem lokalen Verständnis der Konvergenzre-
gion vom Newtonverfahren und dem Abstand zur nächsten Singularität basiert.

Wichtig für die Anwendung von Methoden der numerischen nichtlinearen Algebra in math-
ematischen Beweisen ist die Möglichkeit zu zertifizieren, dass die berechneten approxima-
tiven Lösungen eines Polynomsystems zu echten (unterschiedlichen) Lösungen des Systems
korrespondieren. Wir implementieren eine neue Zertifizierungsmethode basierend auf Inter-
vallarithmetik und dem Krawczyk-Verfahren, welche den aktuellen Stand der Technik um
mehrere Größenordnungen schlägt.

Wir demonstrieren außerdem numerische nichtlineare Algebra an einer Reihe von Anwen-
dung. Um die Werkzeuge und Techniken der numerischen nichtlinearen Algebra zu demon-
strieren, betrachten wir Steiners Kegelschnittproblem und geben die erste komplett reelle
Instanz mittels eines computergestützten Beweises an. Wir betrachten die Wirkung der pro-
jektiven linearen Gruppe auf kubischen Flächen und berechnen den Grad der projektiven Va-
rietät, die durch den Zariskiabschluss des Orbits einer allgemeinen kubischen Fläche gegeben
ist. Wir betrachten zudem das Problem der Maximum-Likelihood Schätzung für Modelle
von Gaußschen Verteilungen, dessen Kovarianzmatritzen innerhalb eines gegeben linearen
Raums liegen. Mittels numerischer nichtlinearer Algebra berechnen wir den ML Grad und
den dualen ML Grad für verschiedene Modelle von linearen Kovarianzmatritzen. Eine weitere
Anwendung ist die Untersuchung von Tensegrity Frameworks, welche aus starren Stangen
und elastischen Kabeln bestehen. Wir benutzen numerische nichtlineare Algebra, um die
semi-algebraische Katastrophenmenge zu samplen, welche die Region des Parameterraums
charakterisiert, die plötzliche große Formveränderungen auslösen kann.

Abschließend präsentieren wir das Softwarepaket HomotopyContinuation.jl für die nu-
merische Lösung von Polynomsystemen. Wir beschreiben seine Funktionalität, teilen einige
der Design- und Implementierungsdetails und demonstrieren seinen Einfluss auf die breitere
Forschungsgemeinschaft.
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1 Introduction
Numerical linear algebra allows us to efficiently and accurately compute approximate answers
to problems in linear algebra. We can hardly overstate its importance in applied mathematics,
engineering, and the sciences. Every day, engineers, researchers, and scientists solve linear
algebra problems using reliable and robust numerical linear algebra software.

In many applications, linear algebra is the result of approximating nonlinear equations. A
first step to avoid the reduction to linear algebra is nonlinear algebra [MS21]. Nonlinear alge-
bra is a generalization of linear algebra where nonlinear polynomial equations and inequalities
replace linear systems. At the heart of nonlinear algebra is algebraic geometry but there are
also links to many other branches of mathematics. These include combinatorics, algebraic
topology, commutative algebra, and discrete geometry. Nonlinear algebra connects these
different branches of mathematics with a strong focus on computations and applications.

In linear algebra, one of the main computational tasks is solving a system of linear equa-
tions. The analogue in nonlinear algebra is solving a system of polynomial equations. What
does it mean to solve such systems, and how should the solutions be represented? For
a system of linear equations, the answer is relatively simple since the solution is always a
finite-dimensional affine space. In numerical linear algebra, we represent such a space by a
floating-point approximation of its basis vectors. For a system of polynomial equations, the
description depends on the dimension of its solution set. If the solution set only consists
of finitely many points, then computing a floating-point approximation of each solution is
sufficient. If the solution set is positive-dimensional, then a description is more complicated.
A possibility is to describe it by a collection of witness sets where each witness set contains
the isolated solutions of an associated system of polynomial equations together with some
additional data.

There are many methods, symbolic and numerical, to compute all isolated solutions of a
polynomial system. One of the first researchers to describe a numerical method were Drexler
[Dre77], and Garcia and Zangwill [GZ79]. They used numerical homotopy continuation to
find all isolated solutions of a system of polynomial equations. The general idea is to construct
a homotopy that interpolates between a start and a target system using a continuation
parameter. Each solution of the start system is then tracked to a solution of the target
system as the homotopy interpolates between the start and the target system. At this
point, continuation methods were already established as a general method of finding roots of
systems of nonlinear equations but with a significant focus on solving differential equations.
Allgower and Georg’s book [AG90] provides an overview of the theory with the important
case of polynomial systems placed in the perspective of much more general systems.

In the years around 1990, the theory for solving polynomial systems with homotopy contin-
uation methods significantly improved by using techniques from algebraic geometry and com-
plex analysis [MS87b,MS89,MSW90,MSW92b]. The polyhedral homotopy method [HS95]
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substantially improved the efficiency to solve general polynomial systems. Around the turn of
the century the concept of a witness set was introduced [SW96] and refined [SV00,SVW01].
Witness sets give a numerical method to describe positive-dimensional varieties and to com-
pute their irreducible components. The concept of a witness set opened up many applications
in algebraic geometry and created the area of numerical algebraic geometry [SW96]. The
article [HS17] by Hauenstein provides an overview of recent advancements in numerical al-
gebraic geometry. These include pseudo-witness sets [HS10], algorithms for intersecting
algebraic varieties [SVW04] that led to a new class of algorithms for solving systems equa-
tion by equation [HSW11], as well as other notions of witness sets [LRS18]. The theoretical
development was accompanied by the emergence of software packages to put the theory
into practice. These include the currently actively maintained software packages Bertini
[BHSW], Hom4PS-2/3 [LLT08, CLL14], NAG4M2 [Ley11], and PHCpack [Ver99]. Another
important advancement was the development of the software alphaCertified [HS12] to
certify isolated solutions of a polynomial system starting from numerical approximations.
This makes it possible to use numerical results in mathematical proofs.

So far, we have associated the numerical solution of polynomial systems with the field of
numerical algebraic geometry. Numerical algebraic geometry’s primary focus is on applying
numerical techniques to algebraic geometry problems. But only limited attention is paid to
the basic underlying numerical techniques. This lack of attention limits the robustness and
reliability of computations in numerical algebraic geometry. While experts in numerical alge-
braic geometry software know how to deal with these issues, other researchers often struggle
to the point where they give up on these tools. For a wider adoption of nonlinear algebra
in the sciences, it is necessary to improve the robustness and reliability of its computational
methods. Therefore, it is necessary to develop numerical nonlinear algebra. The first step
is a rebuilding of the tools and methods from numerical algebraic geometry with a strong
focus on applying ideas, methods, and best practices from numerical analysis.

This thesis is concerned with three different aspects of numerical nonlinear algebra: im-
proving the efficiency and robustness of its computational methods, developing easy to use
and reliable software, and applying it to problems in mathematics and the sciences. The
reason for these three different aspects is as follows. Dissatisfied with the existing software
for the numerical solution of polynomial systems, the author and Paul Breiding started devel-
oping the software package HomotopyContinuation.jl in late 2017. To test and improve
the software, we solved a wide range of nonlinear algebra problems in mathematics and the
sciences. This experience showed us where it was necessary to apply methods from numerical
analysis to increase the robustness and reliability of the software and the underlying methods.
We present the results of this process in this thesis. In the following, we give an overview of
its content.

To introduce tools and techniques from numerical nonlinear algebra, we consider in Chap-
ter 2 Steiner’s conic problem. Steiner’s conic problem asks the following question:

How many conics in the plane are tangent to five given conics in general position?

This classic geometric problem, posed by Jakob Steiner in 1848, allows us to touch on many
themes present in this thesis. It was also one of the problems that most significantly helped
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in the development of HomotopyContinuation.jl and the starting point for the results
presented in Chapter 4 and 5. The correct answer to Steiner’s conic problem is 3264 (counting
over the complex numbers). This was first shown by Chasles in 1864. But whether there
exists a configuration of five conics with 3264 real tangent conics was answered affirmatively
only in 1997 by Ronga, Tognoli and Vust [RTV97] using a non-constructive proof. In Chapter
2, we give the first fully real instance of Steiner’s conic problem using a computer-assisted
proof.

After this first adventure into the world of numerical nonlinear algebra, we recall in
Chapter 3 the foundations for the numerical solution of polynomials systems using homotopy
continuation methods.

Inspired by the work of Deuflhard on Newton methods [Deu11], we present in Chapter 4
a new path tracking algorithm specifically designed for the demands of homotopy continua-
tion methods in the context of numerical nonlinear algebra. The algorithm uses an adaptive
step size control that builds on a local understanding of the region of convergence of New-
ton’s method and the distance to the closest singularity. To handle numerically challenging
situations, the algorithm uses mixed-precision arithmetic. The result is an algorithm that
substantially outperforms the path tracking algorithm in the state of the art software package
Bertini in terms of efficiency and robustness. We demonstrate this in several numerical
examples, including Steiner’s conic problem.

To prove that we found a fully real instance of Steiner’s conic problem in Chapter 2,
we needed to certify that a certain polynomial system has 3264 real isolated zeros. The
certification of isolated zeros in numerical algebraic geometry was pioneered by Hauenstein
and Sottile with their implementation alphaCertified [HS12]. To certify our fully real
instance of Steiner’s conic problem took more than 36 hours using alphaCertified. This
experience motivated us to develop and implement a faster method for certifying isolated
zeros of a polynomial system. The result is presented in Chapter 5. One of the key ideas in
our approach is the use of interval arithmetic. While interval arithmetic is used throughout
the sciences, it was not yet much used in numerical nonlinear algebra. Our contribution
outperforms alphaCertified by several orders of magnitude. To illustrate this, we consider
our fully real instance of Steiner’s conic problem. The certification of this instance now
just takes around 3 seconds compared to the previous 36 hours. This dramatic increase
in certification efficiency allows for a paradigm shift in numerical nonlinear algebra where
certification is the default and not just an option.

In Chapter 6–8, we demonstrate the application of numerical nonlinear algebra to three
different problem domains: classic algebraic geometry, statistics and metric geometry.

In Chapter 6, we apply numerical nonlinear algebra to a problem in classic algebraic
geometry. We study the action of the projective linear group PGL(C, 4) on cubic surfaces
parameterized by points in P19. We compute the degree of the 15-dimensional projective
variety given by the orbit closure of a general cubic surface.

In Chapter 7, we demonstrate the application of numerical nonlinear algebra in statistics.
We study the problem of maximum likelihood estimation (MLE) for Gaussian models that
have their covariance matrix lying in a given linear space. Maximum likelihood estimation
for linear covariance models is a nonlinear nonconvex algebraic optimization problem that is,
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in general, poorly understood. There is a need for accurate methods that reliably identify
all local maxima. Numerical nonlinear algebra provides such a method. The number of
complex critical points for a given model is its maximum likelihood degree (ML degree).
Understanding the ML degree of statistical models is one of the prominent topics in algebraic
statistics. Using numerical nonlinear algebra, we determine the ML degree and dual ML
degree for various linear covariance models and discuss cases where the likelihood function
has multiple local maxima.

In Chapter 8, we discuss elastic tensegrity frameworks made from rigid bars and elastic
cables, depending on many parameters. For any fixed parameter values, the stable equilibrium
position of a framework is determined by minimizing an energy function subject to algebraic
constraints. As parameters smoothly change, a stable equilibrium can disappear. This loss
of equilibrium is called ‘catastrophe’ since the framework will experience sudden large-scale
shape changes despite small changes of parameters. Using nonlinear algebra, we characterize
a semialgebraic subset of the parameter space, the catastrophe set, where catastrophes are
possible. In particular, the catastrophe set detects the merging of local extrema from this
parametrized family of constrained optimization problems. Tools from numerical nonlinear
algebra allow the reliable and efficient computation of all stable equilibrium positions and
the catastrophe set.

Finally, in Chapter 9, we demonstrate the functionality of HomotopyContinuation.jl
and share some of its design and implementation details. One of the primary goals in
the development of HomotopyContinuation.jl was to create a software package that
allows mathematicians, engineers and scientists to solve difficult problems in nonlinear al-
gebra without being an expert in numerical nonlinear algebra. We highlight the impact
of HomotopyContinuation.jl on this goal by demonstrating the wide range of research
results already obtained using the software.
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2 Steiner’s Conic Problem

This chapter is based on the article “3264 Conics in a Second” [BST20] by Paul Breiding,
Bernd Sturmfels, and Sascha Timme. The article is published in the January 2020 issue of
the Notices of the American Mathematical Society. Compared to the published article this
chapter is updated to consider the new developments described in Chapter 5.

In this chapter, we demonstrate tools and techniques from numerical nonlinear algebra
on Steiner’s conic problem. This classic problem, posed by Jakob Steiner in 1848, allows us
to touch on many themes present in this thesis.

2.1 Introduction
A conic in the plane R2 is the set of solutions to a quadratic equation A(x, y) = 0, where

A(x, y) = a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6. (2.1)

If there is a second conic

U(x, y) = u1x
2 + u2xy + u3y

2 + u4x+ u5y + u6, (2.2)

then the two conics intersect in four points in C2, counting multiplicities and counting
intersections at points at infinity, provided A and U are irreducible and not multiples of
each other. This is the content of Bézout’s theorem. To take into account the points
of intersection at infinity, algebraic geometers like to replace the affine plane C2 with the
complex projective plane P2. In the following, when we write ’count’, we always mean
counting solutions in projective space. Nevertheless, we work with C2 for our exposition.

Figure 2.1: The red ellipse is tangent to four blue ellipses and one blue hyperbola.
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A solution (x, y) of the system A(x, y) = U(x, y) = 0 has multiplicity ≥ 2 if it is a zero
of the Jacobian determinant

∂A
∂x ·

∂U
∂y −

∂A
∂y ·

∂U
∂x = 2(a1u2 − a2u1)x2 + · · ·+ (a4u5 − a5u4). (2.3)

Geometrically, the conic U is tangent to the conic A if (2.1), (2.2) and (2.3) are zero for
some (x, y) ∈ C2. For instance, Figure 2.1 shows a red ellipse and five other blue conics
that are tangent to the red ellipse. Steiner’s conic problem asks the following question:

How many conics in the plane are tangent to five given conics in general position?

The number is five because each tangency condition removes one of the five degrees of
freedom in a conic.

There are two fundamental questions related to Steiner’s problem. “How many conics are
tangent to five given conics?” and “How do we find all conics tangent to five given conics?”.
The first question is the original conic problem, first asked in 1848 by Steiner who suggested
the answer 7776. That number turned out to be incorrect. In the year 1864, Chasles
gave the correct answer of 3264. This was further developed by Schubert, whose 1879
book “Kalkül der abzählenden Geometrie” [Sch79] led to Hilbert’s 15th problem, and thus
to the 20th-century development of enumerative algebraic geometry. The number 3264
appears prominently in the title of the textbook by Eisenbud and Harris [EH16]. A delightful
introduction to Steiner’s problem was presented by Bashelor, Ksir and Traves in [BKT08].

To answer the second question, we need to find equations whose solutions describe the
conics tangent to five given conics. An instance of our problem is given by a list of 30 = 5×6
coefficients in R or C:

A(x, y) = a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6,

B(x, y) = b1x
2 + b2xy + b3y

2 + b4x+ b5y + b6,

C(x, y) = c1x
2 + c2xy + c3y

2 + c4x+ c5y + c6,

D(x, y) = d1x
2 + d2xy + d3y

2 + d4x+ d5y + d6,

E(x, y) = e1x
2 + e2xy + e3y

2 + e4x+ e5y + e6.

(2.4)

By eliminating the two unknowns x and y from the three equations (2.1), (2.2) and (2.3), we
can write the tangency condition directly in terms of the 12 = 6 + 6 coefficients a1, . . . , a6,
u1, . . . , u6 of A and U :

T (A,U) = 256a4
1a

2
3u

2
3u

4
6 − 128a4

1a
2
3u3u

2
5u

3
6 + 16a4

1a
2
3u

4
5u

2
6 + · · ·+ a4

5a
2
6u

2
1u

4
2. (2.5)

The polynomial T is a sum of 3210 terms. It is of degree six in the variables a1, . . . , a6 and
of degree six in u1, . . . , u6. Known classically as the tact invariant, it vanishes precisely when
the two conics are tangent.

If the coefficients are general, we can assume that each conic U that is tangent to
the conics A,B,C,D and E has a nonzero constant term u6. We can then set u6 = 1.
Steiner’s problem for the conics A,B,C,D,E now translates into a system of five polynomial
equations in five unknowns u1, u2, u3, u4, u5. Each of the five tangency constraints is an
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equation of degree six:

T (A,U) = T (B,U) = · · · = T (E,U) = 0. (2.6)

Steiner used Bézout’s theorem to argue that these equations have 65 = 7776 solutions. How-
ever, this number overcounts because there is a Veronese surface of extraneous solutions U ,
namely the squares of linear forms. These degenerate conics have the form

U(x, y) = (x, y, 1) · `T ` · (x, y, 1)T ,

where ` = (`1, `2, `3) is a row vector in C3. Since

U(x, y) = (x, y, 1)
(

2u1 u2 u4
u2 2u3 u5
u4 u5 2u6

)
(x, y, 1)T ,

the condition for U to be a square is equivalent to

rank
(

2u1 u2 u4
u2 2u3 u5
u4 u5 2u6

)
≤ 1. (2.7)

This discussion leads us to the following algebraic reformulation of Steiner’s conic problem:

Find all solutions of the equations (2.6) so that the matrix in (2.7) has rank ≥ 2. (2.8)

We offer a convenient way for you to compute the 3264 complex conics that are tangent to
your chosen conics via the web interface at www.juliahomotopycontinuation.org/DIY.
This web interface uses the software HomotopyContinuation.jl to solve problem (2.8) in
less than a second.

A related question to Steiner’s conic problem is “Do there exist five real conics whose
3264 tangent conics are all real?”. This was answered affirmative by Ronga, Tognoli and
Vust [RTV97]. In their argument, they do not give an explicit instance but rather show that
in the neighborhood of some particular conic arrangement, there must be an instance that
has all of the 3264 conics real. Hence, this raises the following problem:

Find an explicit instance of five conics A,B,C,D,E such
that the 3264 solutions to (2.8) are all real. (2.9)

Using numerical nonlinear algebra, we discovered the solution in Figure 2.2. We claim
that all the 3264 conics that are tangent to those five conics are real.


a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6
c1 c2 c3 c4 c5 c6
d1 d2 d3 d4 d5 d6
e1 e2 e3 e4 e5 e6

 =


10124547
662488724

8554609
755781377

5860508
2798943247

−251402893
1016797750

−25443962
277938473 1

520811
1788018449

2183697
542440933

9030222
652429049

−12680955
370629407

−24872323
105706890 1

6537193
241535591

−7424602
363844915

6264373
1630169777

13097677
39806827

−29825861
240478169 1

13173269
2284890206

4510030
483147459

2224435
588965799

33318719
219393000

92891037
755709662 1

8275097
452566634

−19174153
408565940

5184916
172253855

−23713234
87670601

28246737
81404569 1



Figure 2.2: The five conics from Proposition 2.1.
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Proposition 2.1. There are 3264 real conics tangent to those given by the 5× 6 matrix in
Figure 2.2.

We provide an animation showing all the 3264 real conics of this instance at this URL:

www.juliahomotopycontinuation.org/3264/

The construction of our example originates from an arrangement of double lines, which we
call the pentagon construction. One can see the pentagon in the middle of Figure 2.3. There
are points where the red conic seems to intersect a blue line but they are actually points
where the red conic touches one branch of a blue hyperbola. See [Sot] for further details.

Figure 2.3: The five blue conics in the central picture are those in Proposition 2.1. Shown in red is one of the
3264 real conics that are tangent to the blue conics. Each blue conic looks like a pair of lines, but it is a thin
hyperbola whose branches are close to each other. The two pictures on the sides show close-ups around two
of the five points of tangency. The red conic is tangent to one of the two branches of the blue hyperbola.

In the following two sections, we discuss the algebro-geometric meaning of the pentagon
construction and present a rigorous computer-assisted proof that indeed all of the 3264
conics tangent to our five conics are real. Additionally, we give some insight into how we
accomplished finding our five conics.

2.2 Chow Rings and Pentagons
To construct the fully real instance in Proposition 2.1, it was necessary to understand the
approach to deriving the number 3264 along the lines of the article [BKT08].

Steiner phrased his problem as that of solving five equations of degree six on the five-
dimensional space P5. The incorrect count occurred because of the locus of double conics
in P5. This is a surface of extraneous solutions. One fixes the problem by replacing P5 with
another five-dimensional manifold, namely the space of complete conics. This space is the
blow-up of P5 at the locus of double lines. It is a compactification of the space of nonsingular

8
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conics that has desirable geometric properties. A detailed description of this construction
can be found in [BKT08, Sec. 5.1].

In order to answer enumerative geometry questions about the space of complete conics,
one considers its Chow ring, as explained in [BKT08, Sec. 5.2]. Elements in the Chow ring
of the space of complete conics correspond to subvarieties of this space. More precisely, to
classes of subvarieties. Two subvarieties belong to the same class if and only if they are
rationally equivalent. We refer to the textbook by Eisenbud and Harris [EH16] for a formal
definition of this concept. The Chow ring for the space of complete conics is worked out in
[EH16, Sec. 8.2.4]. Nevertheless, the idea behind studying Chow rings is crystal clear: taking
intersections of varieties is translated to multiplication in the Chow ring. In the remainder
of this section, we will see this in action.

The Chow ring of the space of complete conics contains two special classes P and L.
The class P encodes the conics passing through a fixed point, while the class L encodes the
conics tangent to a fixed line. The following relations hold in the Chow ring:

P 5 = L5 = 1, P 4L = PL4 = 2, P 3L2 = P 2L3 = 4.

These relations are derived in [BKT08, Sec. 4.4–5.3]. For instance, the first equation means
that, if we take five general conics passing through a fixed point, then the intersection
contains one point (namely the point we fixed in the first place). See [BKT08, Table 3] for
the geometric meaning of the other equations.

We write C for the class of conics that are tangent to a given conic. In the Chow ring,
we have

C = 2P + 2L.

This identity is derived in [BKT08, equation (8)]. Our preferred proof is to inspect the first
three terms in the expression (2.5) for the tact invariant T (A,U):

T = 16 · u2
6(4u3u6 − u2

5)2 · a4
1a

3
2 mod〈a2, a

3
3, a4, a5, a6〉.

This has the following intuitive interpretation. We assume that the given fixed conic A
satisfies

|a1| � |a3| � max{|a2|, |a4|, |a5|, |a6|}. (2.10)

Thus the conic A is close to x2 − εy2, where ε is a small quantity. The process of letting ε
tend to zero is understood as a degeneration in the sense of algebraic geometry. With this,
the condition for U to be tangent to A degenerates to u2

6 · (4u3u6 − u2
5)2 = 0.

The first factor u6 represents all conics that pass through the point (0, 0). The second
factor 4u3u6 − u2

5 represents all conics tangent to the line {x = 0}. The Chow ring classes
of these factors are P and L. Each of these arises with multiplicity 2, as seen from the
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exponents. The desired intersection number is now obtained from the Binomial Theorem:

C5= 32(L+ P )5

= 32(L5 + 5L4P + 10L3P 2 + 10L2P 3 + 5LP 4 + P 5)
= 32(1 + 5 · 2 + 10 · 4 + 10 · 4 + 5 · 2 + 1)
= 32 · 102 = 3264 .

The final step in turning this into a rigorous proof of Chasles’ result is carried out in Section 7
of [BKT08].

The degeneration idea in (2.10) can be used to construct real instances of Steiner’s
problem whose 3264 solutions are all real. Fulton first observed this and communicated it to
Sottile, who then wrote down Fulton’s proof in detail [Sot97,Sot]. Ronga, Tognoli, and Vust
[RTV97] independently gave a proof. Apparently, they did not know about Fulton’s ideas.

Fix a convex pentagon in R2 and one special point somewhere in the relative interior of
each edge. Consider all conics C such that, for each edge of the pentagon, C either passes
through the special point or is tangent to the line spanned by the edge. By the count above,
there are (L+ P )5 = 102 such conics C. If the pentagon is chosen sufficiently asymmetric,
then the 102 conics are all real. We now replace each pointed edge by a nearby hyperbola,
satisfying (2.10). For instance, if the edge has equation x = 0 and (0, 0) is its special point,
then we take the hyperbola x2 − εy2 + δ, where ε > δ > 0 are very small. After making
appropriate choices of these parameters along all edges of the pentagon, each of the 102
conics splits into 32 conics, each tangent to the five hyperbolas. Here ’splits’ means, if the
process is reversed, then the 32 different conics collapse into one solution of multiplicity 32.
By construction, all 3264 conics are real.

The argument shows that there exists an instance in the neighborhood of the pentagon
whose 3264 conics are all real, but it does not say how close they should be.

2.3 Approximation and Certification
The pentagon construction gives us a guide on how to find a fully real instance. But for
finding the instance in Proposition 2.1, serious hands-on experimentation was necessary. This
experimentation required us to solve Steiner’s conic problem repeatedly for many different
instances. This amounts to repeatedly solving the system of polynomial equations (2.6).
Here, solve means to compute numerical approximations of all 3264 isolated solutions of an
instance using techniques from numerical nonlinear algebra. We describe these in Chapter 3.

To perform numerical computations, it is beneficial to consider the following alternative
formulation to the equations (2.6). We use five copies of the equations (2.1)–(2.3), each
with a different point of tangency (xi, yi), for i = 1, 2, 3, 4, 5. The ten equations from (2.1)
and (2.2) are quadrics. The five equations from (2.3) are cubics. Altogether, we get the
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following system of 15 equations that we display as a 5× 3 matrix F(A,B,C,D,E):

A(x1,y1) U(x1,y1) ( ∂A
∂x

∂U
∂y
− ∂A

∂y
∂U
∂x

)(x1,y1)

B(x2,y2) U(x2,y2) ( ∂B
∂x

∂U
∂y
− ∂B

∂y
∂U
∂x

)(x2,y2)

C(x3,y3) U(x3,y3) ( ∂C
∂x

∂U
∂y
− ∂C

∂y
∂U
∂x

)(x3,y3)

D(x4,y4) U(x4,y4) ( ∂D
∂x

∂U
∂y
− ∂D

∂y
∂U
∂x

)(x4,y4)

E(x5,y5) U(x5,y5) ( ∂E
∂x

∂U
∂y
− ∂E

∂y
∂U
∂x

)(x5,y5)


. (2.11)

Each matrix entry is a polynomial in the 15 variables u1, . . . , u5, x1, y1 . . . , x5, y5. The 30
parameters of this system are the coefficients of the conics A,B,C,D,E. The system of five
equations seen in (2.6) is obtained by eliminating the 10 variables x1, y1, x2, y2, x3, y3, x4, y4,
x5, y5 from the new system F(A,B,C,D,E)(x) introduced in (2.11).

At first glance, it looks like the new formulation (2.11) is worse than the one in (2.6).
Indeed, the number of variables has increased from 6 to 15, and the Bézout number has
increased from 65 = 7776 to 21035 = 248832. However, the new formulation is better
suited for numerical computations because the equations in the former formulation have a
lower degree and can be evaluated faster and more accurately.

One of the key ideas in numerical nonlinear algebra is that once we have the 3264 solutions
to F(A′,B′,C′,D′,E′)(x) for some general set of conics (A′, B′, C ′, D′, E′) we can compute the
solutions to all other sets of conics (A,B,C,D,E) by using the parameter homotopy

H(x, t) = Ft·(A,B,C,D,E)+(1−t)·(A′,B′,C′,D′,E′)(x). (2.12)

The conic tA+ (1− t)A′ is defined by the coefficients tai + (1− t)a′i, where ai and a′i are
the coefficients of A and A′. By construction we know the 3264 solutions of H(x, 0). To
obtain the solutions at t = 1, we move from t = 0 to t = 1 while keeping track of all 3264
solutions. At the end we obtain the 3264 solutions for the sets of conics (A,B,C,D,E).
This technique is called homotopy continuation. It is the basic building block for most
computations in numerical nonlinear algebra and it is explained in detail in Chapter 3.

Given a general instance of five conics (A′, B′, C ′, D′, E′) ∈ C30 and its 3264 isolated
solutions, we can solve a general real instance (A,B,C,D,E) ∈ R30 of Steiner’s conic prob-
lem using the parameter homotopy (2.12). Using HomotopyContinuation.jl, this takes a
second on a modern laptop. The easiest way to obtain a general instance (A′, B′, C ′, D′, E′)
with its 3264 isolated solutions is to use the monodromy method described in Section 3.5.

Figure 2.4: A proof for Proposition 2.1 obtained using HomotopyContinuation.jl.
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Now we turn back to the fully real instance in Proposition 2.1 and its proof. Given
the 3264 computed approximations to this instance, we can certify the result a-posteriori.
Here, certify means a computational procedure that takes as input the 3264 computed
approximations and our instance and returns a certificate guaranteeing that there are at
least 3264 distinct real solutions to our instance. Given that we know that Steiner’s problem
has 3264 solutions, we obtained a computer-assisted mathematical proof that our instance is
fully real. Figure 2.4 shows the output the certification procedure for the certification routine
developed in Chapter 5 and implemented in HomotopyContinuation.jl. We discuss the
certification of solutions in detail in Section 3.6 and Chapter 5.

2.4 Conclusion
In this chapter, we introduced nonlinear algebra and numerical nonlinear algebra by consid-
ering the problem of computing the 3264 conics that are tangent to five given conics in the
plane. We demonstrated that the 3264 tangent conics for a given instance of five conics
correspond to the 3264 isolated solutions of a system of polynomial equations and discussed
briefly how we can use numerical nonlinear algebra to quickly compute these solutions. Ad-
ditionally, we presented in Proposition 2.1 an instance of five real conics for which there are
3264 real conics tangent to all five given conics. For finding this instance, it was necessary to
understand the enumerative geometry approach to deriving the number 3264. The proof of
Proposition 2.1 was computer-assisted and relied on the certification of the isolated zeros of
a polynomial system. After this first exposure to numerical nonlinear algebra, we will discuss
in the next chapter the foundations for the numerical solution of polynomial systems.
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3 Background: The Numerical Solution of
Polynomial Systems

In this chapter, we outline the foundations for the numerical solution of polynomials systems
using homotopy continuation methods. We focus on the necessary concepts and techniques
to solve a wide range of systems appearing in applications. For a more comprehensive
introduction to the subject, we recommend the book by Sommese and Wampler [SW05], as
well as the article by Hauenstein [HS17] for an overview of recent developments.

Before we start, the term “numerical solution” needs more explanation. In general, we
want to compute all solutions of a polynomial system and we think of a numerical solution
as a point sufficiently close to a solution of the system. For a regular isolated solution,
we can make this notion more precise. We require that Newton’s method starting with
our numerical solution converges to this solution. If a system has infinitely many solutions,
then these can be represented by a finite collection of witness sets (we introduce these in
Section 3.7). Each witness set consists of a finite set of isolated solutions and some additional
information. Therefore, the numerical solution of polynomial systems can always be reduced
to the computation of isolated solutions of polynomial systems.

We focus on the computation of isolated solutions based on the homotopy continuation
method. The basic idea for a given polynomial system F that we want to solve is the
following.
1. Put the polynomial system F into a family of polynomial systems FQ depending on a

parameter set Q. Then there exists a p ∈ Q such that F = Fp ∈ FQ.
2. Solve a general system Fq ∈ FQ.
3. Deform the start system Fq to the target system Fp by moving inside the family FQ along

a path γ : [0, 1] → Q with γ(1) = q and γ(0) = p and track the solutions of Fq as it is
deformed to Fp.

In the last step, we constructed the homotopy H(x, t) = Fγ(t)(x) and the problem of tracking
a solution is a continuation problem giving the method its name.

From this description, it is not clear why this procedure should allow us to compute all
isolated solutions of F . Similarly, there is the question of how to embed F into a family
of polynomial systems FQ and how to solve the start system Fq. The system Fq has to be
easier to solve otherwise we would end nowhere. We use algebraic geometry to answer these
questions in the following sections.
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3.1 Preliminaries
We assume basic familiarity with concepts from algebraic geometry and commutative algebra
on the level of the undergraduate textbook “Ideals, Varieties, and Algorithms” by Cox, Little,
and O’Shea [CLO15]. In the following, we only perform a brief review of the necessary
concepts to introduce our notation and refer for details to [CLO15].

In this thesis, a polynomial f is always considered to be an element of the polynomial
ring C[x1, . . . , xn] in n variables x1, . . . , xn with coefficients in C. A real polynomial f is a
polynomial such that f and its conjugate f̄ are identical. A polynomial system F : Cn → CN
is a collection of N polynomials f1, . . . , fN ∈ C[x1, . . . , xn] with F = (f1, . . . , fN ). F is a
square system if n = N and overdetermined if N > n. A point x ∈ Cn is a solution (or
zero) of F if F (x) = 0 or equivalently f1(x) = . . . = fN (x) = 0. Algebraically, a polynomial
system F generates an ideal I. For an ideal I, the affine variety V(I) is defined by

V(I) = {x ∈ Cn | f(x) = 0 for all f ∈ I} ⊆ Cn .

If the ideal I is generated by F , then we also write V(F ) for the variety defined by I. We
refer to V(F ) also as the zero set or solution set of F .

To prove statements related to algebraic varieties, it is immensely helpful to replace Cn
with the n-dimensional projective space Pn. Pn is a compact space given by the quotient
(Cn+1 \ {0})/∼ where x ∼ y if only if x = λy for some λ ∈ C \ {0}. We write the
equivalence class of (x0, x1, . . . , xn) ∈ Cn+1 \ {0} in Pn as [x0 : x1 : . . . : xn]. A polynomial
f ∈ C[x0, x1, . . . , xn] is homogeneous of degree d if for all x ∈ Cn+1 and λ ∈ C we have
f(λx) = λdf(x). Only a homogeneous polynomial is well defined as a map Pn → P.

Let F̄ = (f̄1, . . . , f̄N ) be a system of N homogeneous polynomials in n+ 1 variables. We
call such a system homogeneous. A homogeneous system F̄ generates a homogeneous ideal
J . For a homogeneous ideal J , the projective variety V(J ) is defined by

V(J ) = {x ∈ Pn | f(x) = 0 for all f ∈ J } ⊆ Pn .

As in the affine case, we write V(F̄ ) for the projective variety defined by the homogeneous
ideal generated by F̄ . A homogeneous ideal J also defines an affine variety

V(J ) = {x ∈ Cn+1 | f(x) = 0 for all f ∈ J } ⊆ Cn+1

called the affine cone over V(J ).
Consider the open set Ui = Pn \ V(xi). Since any point in projective space has some

nonzero coordinate, the Ui cover Pn and every point in Ui has a unique representative of
the form (

x0
xi
, . . . ,

xi−1
xi

, 1, xi+1
xi

, . . . ,
xn
xi

)
.

The maps
ϕi : Ui → Cn, x 7→

(
x0
xi
, . . . ,

xi−1
xi

,
xi+1
xi

, . . . ,
xn
xi

)
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are the standard affine charts of Pn and give Pn the structure of a manifold. It follows that
locally every projective variety looks like an affine variety. The construction also generalizes
to any nonzero homogeneous linear polynomial `(x) = a0x0 + . . .+ anxn since every point
in U` = Pn \ V(`) has a unique affine representative of the form (x0/`(x), . . . , xn/`(x)) .
Thus, we can identify U` with the affine space V(`− 1) ∼= Cn.

Given a projective variety X = V(F̄ ) ⊆ Pn, the intersection of the affine cone of X with
the hyperplane V(xi − 1), considered as a subset of Cn, is the dehomogenization of X with
respect to xi. The dehomogenization of X is cut out by F̄ (x1, . . . , xi−1, 1, xi+1, . . . , xn).
Conversely, assume we have an affine variety X = V(F ) ⊆ Cn. We define the projective
closure X̄ of X by introducing a new variable x0 and

X = {[1 : x] ∈ Pn |x ∈ X}

where the closure is taken in the Zariski topology. To determine defining equations for X̄ is
in general a difficult task. The naive strategy is to use the homogenization F̄ = (f̄1, . . . , f̄N )
of F given by

f̄i = xdi0 fi

(
x1
x0
, . . . ,

xn
x0

)
∈ C[x0, . . . , xn], i = 1, . . . , N

since F̄ (1, x1, . . . , xn) = F (x1, . . . , xn). However, in general X ( V(F̄ ) ⊆ Pn. Instead, it
is necessary to compute a homogenization of the ideal generated by F . This is in general
not the ideal generated by the homogenization of F .

Given an projective variety X ⊂ Pn of dimension k, the degree of X, denoted by deg(X),
is the number of intersection points with a general linear space L ⊂ Pn of codimension k,
i.e., deg(X) = |X ∩ L|. The analogous definition holds for affine varieties X ⊂ Cn.

A parameterized polynomial system is a system F = (f1, . . . , fN ) where each fi is an
element of C[p1, . . . , pm][x1, . . . , xn]. To indicate a parameterized polynomial system, we
often just write F (x; p). We also consider F (x; p) as a polynomial map Cn × Cm → CN .
If we want to refer to a polynomial system for a fixed q ∈ Cm we write Fq. A family of
polynomial systems FQ with Q ⊆ Cm is the set FQ := {Fq | q ∈ Q} for a fixed parameterized
polynomial system F (x; p).

We say that a point x ∈ V(F ) ⊆ Cn is an isolated solution of the polynomial system F if
there exists an open ball B ⊆ Cn such that V(F )∩B = {x}. A solution x of F is a regular
solution if the Jacobian JF (x) of F at x has full column rank.

3.2 Path Tracking
Before discussing the details on how to choose a suitable family of polynomial systems and
how to obtain the solutions to a start system, we take a look at the very last step; tracking a
solution as the start system is deformed into the target system. The tracking step is of critical
importance for the performance and robustness of the homotopy continuation method. But
at this point, we do not go into the fine details of the path tracking procedure since in
Chapter 4 a new path tracking algorithm is presented in detail.
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Let H(x, t) : Cn×C→ CN be a polynomial homotopy. The adjective polynomial refers
to the property of H(x, t) that it is a polynomial system for all t ∈ C. Additionally, we
require that H is holomorphic in t. We assume to have a solution x1 to H(x, 1) = 0 and
we want to compute a solution of H(x, 0) = 0. For this, we consider the solution path x(t)
implicitly defined by the conditions

H(x(t), t) = 0 for all t ∈ (0, 1] and x(1) = x1. (3.1)

From this condition follows that the solution path x(t) is also the solution to the Davidenko
differential equation

Hx(x(t), t)ẋ(t) +Ht(x(t), t) = 0 (3.2)

with initial value x(0) = x0 where Hx and Ht denote the partial derivatives with respect
to x and t. We say that a solution path x(t) is smooth (or nonsingular) if there exists a
continuous path x : (0, 1]→ CN such that x(1) = x1, H(x(1), 1) = 0 and for all t ∈ (0, 1]
the point x(t) is a regular isolated solution of H(x, t).

There is a large existing literature on how to track a smooth path x(t) numerically; see,
e.g., [AG90]. The basic idea is to treat the problem (3.1) as a sequence of problems

H(x(tk), tk) = 0 , k = 0, 1, 2, . . . (3.3)

with an (a-priori unknown) subdivision 1 = t0 > t1 > . . . > tM = 0 of the interval [0, 1].
Each of the problems (3.3) is then solved by a correction method, usually Newton’s method,
under the assumption that a prediction method, e.g., Euler’s method, provides a good starting
point. The prediction method makes use of the Davidenko differential equation (3.2). The
choice of step size ∆tk = tk − tk+1 is often given by an adaptive step size control. The step
size must be chosen appropriately: if the step size is too large, the prediction can be outside
the zone of convergence of the corrector, while a too small step size means progress is slow.

A challenge is that a solution path x(t) does not necessarily converge in the limit t→ 0
or even if so, not necessarily to a regular isolated solution of H(x, 0). This part of the
continuation method is referred to as the endgame and handled as a distinct problem from
the general path tracking procedure outlined previously. More precisely, three different cases
are possible.
1. The limit limt→0 x(t) exists and is a regular isolated solution of H(x, 0). Then, the

Jacobian Hx(x(0), 0) has full column rank and the normal path tracking algorithm is
sufficient.

2. The limit limt→0 x(t) exists but the Jacobian Hx(x(0), 0) does not have full column rank.
In this case, x(0) is either an isolated solution with multiplicity greater than one or it is
not an isolated solution. We refer in both cases to x(0) as a singular solution.

3. The limit limt→0 x(t) does not exist. In this case, the path is diverging and we say that
the solution is ‘at infinity’.
To detect and deal with these cases, it is necessary to exploit the additional structure

of the problem. Given a solution path x(t), there exists a positive integer m, integers
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w1, . . . , wn ∈ Z and ε > 0 such that

x(t) =

x1(t)
...

xn(t)

 =


a(1) t

w1
m +

∑∞
j>w1 a

(1)
j t

j
m

...
a(n) t

wn
m +

∑∞
j>wn a

(n)
j t

j
m

 for 0 < t < ε (3.4)

with a(1), . . . , a(n) 6= 0. That is, locally around 0 the path x(t) is analytic in t 1
m . For a proof

of this, see, e.g., [Wal50] or [MSW92a]. We can view the elements of the expression (3.4)
as elements in the field of Puiseux series C{{t}} and we refer to it as the Puiseux series
expansion of the path x(t). The field of Puiseux series is an algebraically closed, valued field
with valuation map val(xi(t)) = wi

m for xi(t) =
∑∞
j=wi a

(j) t
j
m . We refer to val(xi(t)) = wi

m
as the valuation of xi(t). The smallest m such that the Puiseux series expansion in (3.4)
exists is called the winding number of the path x(t).

Using this additional structure, several algorithms [BHS11b,MSW90,MSW92b,MSW92a]
got developed to compute the value of x(0), if it exists, without tracking the path to zero.
But these algorithms still require tracking the solution path sufficiently close to the limit.
This often poses severe numerical difficulties and makes the computation of singular solutions
challenging.

To detect diverging paths and paths with singular endpoints, it is very useful to know the
valuation of the solution path x(t). Let val(xi(t)) = wi

m be the valuation of the i-th entry
xi(t) of x(t). We observe that

• if wi = 0, then xi(0) = a(i);

• if wi > 0, then xi(0) = 0;

• if wi < 0, then x(t) is a diverging path.

We state this observation in following lemma.

Lemma 3.1. Let x(t) be a solution path, and let (val(x1(t)), . . . , val(xn(t))) be the valua-
tions of the Puiseux expansion at t = 0. Then, the following holds for t→ 0.
1. x(t) diverges, if and only if val(xi(t)) < 0 for at least one 1 ≤ i ≤ n.

2. In all other cases, x(t) converges but x(0) can be a regular or singular solution.

Huber and Verschelde used in [HV98] the first item of Lemma 3.1 to develop an algorithm
to detect diverging paths. This approach is implemented in PHCpack and a similar approach
is used in HOM4-PS-2/3 [LLT08]. An improved version of the Huber and Verschelde algorithm
is implemented in HomotopyContinuation.jl and described in Section 9.2.3.

3.3 Parameter Homotopy
In the previous section, we discussed how to track a solution of a homotopy H(x, t) along a
smooth solution path x(t). We also discussed the possible scenarios for the path x(t) in the
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limit t→ 0. Now we want to start to formalize the general strategy outlined at the beginning
of this chapter. For this, we introduce the general framework of a parameter homotopy. This
framework gives us a powerful tool to find all isolated zeros of a polynomial system F . The
only assumption is that we can embed F into a family of polynomial systems FQ depending
on an irreducible variety Q ⊆ Cm. The following theorem is the theoretical foundation for
this.

Theorem 3.2 (Parameter Continuation [MS89]). Let Q ⊆ Cm be an irreducible algebraic
variety and let F (x; p) : Cn×Q→ CN be a system of N polynomials in n variables, N ≥ n,
with m parameters. Given p ∈ Q, we write Fp(x) = F (x; p). Consider the incidence variety

Z = {(x, p) ∈ Cn ×Q |F (x; p) = 0} ⊆ Cn ×Q

and let Y ⊂ Z be a top-dimensional irreducible component of Z. We denote by π1 : Y →
Cn, (x, p) 7→ x and π2 : Y → Q, (x, p) 7→ p the projections onto the first and second factor.
Furthermore, let N (p,Q) denote the number of regular isolated solutions of Fp contained in
π1(π−1

2 (p)) as a function of p ∈ Q. Then
1. N (p,Q) is finite, and there exists a Zariski open set U ⊂ Q such that N (p,Q) is the

same, say N (Q), for all p ∈ U . We denote the exceptional set by Σ = Q \ U .
2. The homotopy H(x, t) = Fγ(t)(x) with γ(t) : [0, 1]→ U has N (Q) continuous, isolated

smooth solution paths x(t) ∈ π1(π−1
2 (γ(t)));

3. As t → 0, the limits of the solution paths, if they exist, of the homotopy Fγ(t)(x) with
γ(t) : [0, 1] → Q and γ(t) ∈ U for t ∈ (0, 1] include all the regular isolated solutions of
Fγ(0) contained in π1(π−1

2 (γ(0))).
Additionally, if for all p ∈ U the set π1(π−1

2 (p)) has cardinality N (Q), then the limits
of the solution paths include all isolated solutions of Fγ(0) contained in π1(π−1

2 (γ(0))).
This includes the isolated solutions with multiplicity greater than one.

If we have all regular isolated solutions for some general parameter value q ∈ Q, then
item 3 allows us to find all isolated solutions of any system in the family by continuation.
This includes all those solutions with multiplicity greater than one. For this, we track all the
solutions along a path γ(t) : [0, 1] → Q that avoids the exceptional set Σ for t ∈ (0, 1]. In
the case Q ∼= Cm, we can construct the path γ(t) easily due to the following lemma.

Lemma 3.3. Fix a point p ∈ Cm and a proper algebraic variety Σ ⊆ Cm. For almost
all q ∈ Cm, the one-real-dimensional line segment γ(t) := tq + (1 − t)p with t ∈ (0, 1] is
contained in Cm \ Σ.

Proof. The set Σ has complex dimension at most m−1 and real dimension at most 2m−2.
Consider the union of all real one-dimensional lines through p and any point of Σ. It has
only real dimension of at most 2m − 1 and thus for almost all q ∈ Cm it the line segment
{tq + (1− t)p | t ∈ (0, 1]} does not intersect Σ.

Let F (x; p) be a parameterized polynomial system and p ∈ Cm some parameters. The-
orem 3.2 and Lemma 3.3 state combined that for almost all choices q ∈ Cm the parameter
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homotopy
H(x, t) = F (x; tq + (1− t)p) (3.5)

has solution paths whose endpoints, for t from 1 to 0, include all isolated zeros of Fp since
the line segment {tq+ (1− t)p | t ∈ (0, 1]} avoids with probability one the exceptional set Σ.
Therefore, if we can, by some means, compute all isolated solutions of Fq, then we can use
the homotopy (3.5) to compute all isolated solutions of Fp.

3.4 General Homotopies
The previous section showed that we can compute all isolated solutions of a polynomial
system F by embedding it into a family of polynomial systems where we can compute all
isolated solutions for one general member. Here, the last part is the difficult part for most
families since often we do not even know a priori how many isolated solutions a general
member of the family has.

To our advantage, there are two families of square polynomial systems that every square
polynomial system can be embedded in. These are the family of square dense polynomial
systems and the family of square sparse polynomial systems. Both of them are extensively
studied in algebraic geometry. We know the number of isolated solutions of a general member
and an algorithm to compute all isolated solutions of such a general member.

3.4.1 Square Dense Polynomial Systems

We start with the family of dense polynomial systems. Consider a fixed n-tuple (d1, . . . , dn)
of positive natural numbers. Then the family of dense polynomial systems with a degree of
at most (d1, . . . , dn) is given by

F (d1,...,dn) := {(g1, . . . , gn) | gi ∈ C[x1, . . . , xn]≤di for i = 1, . . . , n} ,

where C[x1, . . . , xn]≤di is the space of polynomials of degree at most di in n variables. A
classic result about the number of isolated solutions of an element of F (d1,...,dn) is Bézout’s
theorem.
Theorem 3.4 (Bézout’s theorem). Given positive integers d1, . . . , dn, the number of isolated
solutions of a system F ∈ F (d1,...,dn) is at most the total degree

∏n
i=1 di. The bound is sharp

for almost all F ∈ F (d1,...,dn).

Every square polynomial system F = (f1, . . . , fn) with deg(fi) = di, i = 1, . . . , n, can
be considered as an element of F (d1,...,dn). A general member of F (d1,...,dn) is the system
G = (xd1

1 − 1, . . . , xdnn − 1) since the ∏n
i=1 di isolated zeros of G are the points (z1, . . . , zn)

where zi is any of the di-th roots of unity. The basic idea is to use the straight line homotopy

H(x, t) = tG(x) + (1− t)F (x) (3.6)

to track the known solutions of G to solutions of F . To apply Theorem 3.2, we need to
ensure that for all t ∈ (0, 1] the polynomial system H(x, t) still has ∏n

i=1 di isolated zeros.
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Given the deterministic construction of G, this is often not the case. In particular, if F is
a real polynomial system. Fortunately, there is a very simple trick to resolve this problem
called the γ-trick [SW05, Lemma 7.1.3]. The γ-trick is to multiply G with a random complex
number γ ∈ C since then we do not meet with probability one the exceptional set. This
follows by similar reasoning as in Lemma 3.3. As a result, instead of the homotopy (3.6) the
following homotopy

H(x, t) = tγG(x) + (1− t)F (x) (3.7)

is with probability one sufficient to compute all isolated solutions of F . It is called a total
degree homotopy or sometimes also Bézout homotopy.

3.4.2 Square Sparse Polynomial Systems

The total degree homotopy is very simple to construct but the tradeoff is that the bound
given by Bézout’s theorem is often substantially larger than the actual number of isolated
solutions. In particular, the Bézout bound becomes quickly infeasible for larger systems.
We can improve the situation if we do not just look at the degrees di of each polynomial
contained in the system but rather also their support.

Definition 3.5. The support of a polynomial f =
∑
α cαx

α ∈ C[x1, . . . , xn] is the set
supp(f) := {α ∈ Nn | cα 6= 0}. The Newton polytope of f , Newt(f), is the convex hull of
the support of f , conv(supp(f)).

Given a tuple of supports (A1, . . . , An) with A1, . . . , An ⊆ Nn, we define the family of
sparse polynomial systems

F (A1,...,An) := {(f1, . . . , fn) | fi ∈ C[x1, . . . , xn], supp(fi) = Ai}.

The number of isolated solutions of a general member of F (A1,...,An) in the complex algebraic
torus (C∗)n := (C \ {0})n was first proven by Bernstein [Ber75] after Kushnirenko [Kus75]
proved the special case A1 = · · · = An. Before we state the theorem we need to introduce
the concept of a mixed volume.

Definition 3.6. Let C1, C2, . . . , Cn ⊆ Rn be bounded convex sets. The function

Λ : Rn≥0 → R, (λ1, . . . , λn) 7→ Volume(λ1C1 + · · ·+ λnCn)

is a homogeneous polynomial in λ1, λ2, . . . , λn. The coefficient of λ1λ2 · · ·λn is the mixed
volume of C1, . . . , Cn denoted by MixVol(C1, . . . , Cn).

Theorem 3.7 (BKK theorem [Ber75]). Given support sets A1, . . . , An ⊆ Nn, the number of
isolated solutions of a system F ∈ F (A1,...,An) in (C∗)n is upper bounded by the mixed volume
MixVol(conv(A1), . . . , conv(An)). The bound is sharp for almost all F ∈ F (A1,...,An).

For a system F = (f1, . . . , fn), we refer to MixVol(Newt(f1), . . . ,Newt(fn)) as the
BKK bound or mixed volume of the system. The BKK theorem only counts solutions over
(C∗)n but often all affine solutions are of interest. Huber and Sturmfels introduce in [HS97]
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the concept of the stable mixed volume of a system that gives the general root count in Cn.
If all polynomials fi of the system have a nonzero constant term then the mixed volume and
the stable mixed volume coincide and the BKK bound gives the root count in Cn.

The polyhedral homotopy developed in [HS95] by Huber and Sturmfels is a realization
of Theorem 3.7. Huber and Sturmfels use methods from polyhedral geometry, in particular,
mixed subdivisions, to construct a start system with mixed volume many solutions. Their
result is one of the precursors of tropical geometry [MS15]. We will only very briefly outline
the idea of the procedure and refer for a detailed description to the survey [Li03] by Li. For
the necessary concepts in polyhedral geometry, we also refer to the book “Triangulations”
by De Loera, Rambau, and Santos [DLRS10].

Given a polynomial system F = (f1, . . . , fn) with fi =
∑
α∈supp(fi) cα,ix

α, consider the
homotopy H(x, t) = (h1(x, t), . . . , hn(x, t)) with

hi(x, t) =
∑

α∈supp(fi)
cα,it

ωα,ixα (3.8)

where ωα,i ∈ R is picked randomly. With probability one, H(x, t) degenerates in the limit
t→ 0 into finitely many binomial systems whose total number of solutions equals the mixed
volume of F . The binomial systems occurring in the limit can be computed directly by
computing the mixed subdivision of the point sets Ai = supp(fi), i = 1, . . . , n induced by the
liftings ωi = (ωα,i)α∈Ai , i = 1, . . . , n. Each binomial system corresponds to a mixed cell of
the induced mixed subdivision. The reduction to binomial systems is immensely helpful since
they can be solved directly; see ,e.g., [HS95, Li03]. The solutions to the binomial systems
allow finding mixed volume many solutions to H(x, ε) for some sufficiently small ε > 0.
Starting from ε > 0 we then obtain mixed volume many solution paths. By Theorem 3.2
all solutions of F in (C∗)n are obtained as the endpoint of one of the solution paths if all
paths avoid the exceptional set where the BKK bound is not sharp. We achieve this with
probability one if the outlined procedure is applied to a general member G ∈ F (A1,...,An).
The solutions of F are then obtained by tracking the solutions of G along the straight line
homotopy H(x, t) = tG(x) + (1− t)F (x).

For many polynomial systems, the BKK bound is substantially lower than the Bézout
bound. This lower bound makes the polyhedral homotopy more attractive than a simple total
degree homotopy. A downside of the polyhedral homotopy is that it requires the computation
of a mixed subdivision. This computation can potentially be very expensive, offsetting the
computational savings obtained by the lower solution bound. Since the conception of the
polyhedral homotopy method, a series of algorithmic improvements substantially reduced the
cost of computing mixed subdivisions [CLL17,Jen16b,Jen16a,GLW05,LL11,MT08,VGC96].
In particular, the algorithm developed in [Jen16b,Jen16a] by Anders Jensen is in practice1 so
efficient that the cost of computing a mixed subdivision is negligible compared to the cost of
path tracking. This makes the polyhedral homotopy an excellent choice for solving general
square polynomial systems.

1An open source implementation of the algorithm is available in the Julia package MixedSubdivisions.jl.
The code is available at github.com/saschatimme/MixedSubdivisions.jl.
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3.4.3 Overdetermined Systems

The total degree and the polyhedral homotopy can only be applied to square polynomial
systems. But in many applications, the solution set is defined by overdetermined systems. A
strategy to still apply a total degree or polyhedral homotopy is to reduce an overdetermined
system F : Cn → CN , N > n, to a square system G : Cn → Cn such that V(F ) ⊆ V(G).
We refer to this process as squaring the system up. For this, a random matrix A ∈ Cn×N is
used to construct the squared up system A ·F . The following theorem of Bertini type shows
that the isolated solutions of A · F are a superset of the isolated solutions of F .

Theorem 3.8. [SW05, Theorem 13.5.1] Let F : Cn → CN , N > n, be a system of
polynomials. Assume that X ⊆ Cn is an irreducible affine variety. Then, there is a nonempty
Zariski open set U of k ×N matrices A ∈ Ck×N such that for A ∈ U :
1. if dimX > n − k, then X is an irreducible component of V(F ) if and only if it is an

irreducible component of V(A · F );
2. if dimX = n− k, then X is an irreducible component of V(F ) implies that X is also an

irreducible component of V(A · F );
3. if dimX is an irreducible component of V(F ), its multiplicity as a zero component of
A · F is greater than or equal to its multiplicity as a zero component of F , with equality
if either multiplicity is 1.

In particular, in our setting each regular isolated solution of F is also a regular isolated
solution of A · F . Therefore, to compute all isolated solutions of an overdetermined system
F : Cn → CN , we proceed as follows. We first square the system up using a randomly
chosen A ∈ Cn×N . Then, we compute all isolated solutions of A · F using either a total
degree or a polyhedral homotopy. From the computed isolated solutions, we then select all
those solutions that are also a solutions to F . The last step is usually based on heuristics
but in [DHS20] the authors develop techniques to make it rigorous under the assumption
that additional global information on V(F ) is available.

3.5 Monodromy Method
In the previous section, we computed all isolated solutions of a square polynomial system by
embedding it in a family of dense or sparse polynomial systems. But this approach ignored al-
most everything about the structure of our specific system. In most applications, we deal nat-
urally with highly structured parameterized polynomial systems F (x; p) : Cn× Cm → CN .
Since these systems are so structured, the number of isolated solutions is often even substan-
tially lower than the BKK bound. If we have an overdetermined system, then the process of
squaring the system up often reinforces this gap even more.

An alternative to the general strategies from the previous section is given by the mon-
odromy method [MdCR17,DHJ+18]. This is a probabilistic method that computes under
certain, often satisfied, conditions all isolated solutions of parameterized polynomial sys-
tem F (x; p) for a general parameter value q ∈ Q where Q ⊆ Cm is an irreducible variety.
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This is achieved by only constructing homotopies that stay in the family FQ determined by
F (x; p). The only requirement for this method is that a start pair (x0, p0) ∈ Cn × Q with
F (x0; p0) = 0 is given. Before we state the method in detail, we need to introduce some of
the necessary concepts.

3.5.1 Covering Spaces and the Monodromy Group

In this subsection, we use methods from algebraic topology to introduce the concept of a
monodromy group. A good reference is the textbook by Hatcher [Hat02, Section 1.3].

For an irreducible algebraic variety Q ⊆ Cm consider the incidence variety

Z = {(x, p) ∈ Cn ×Q |F (x; p) = 0} ⊆ Cn ×Q . (3.9)

Denote by π : Z → Q, (x, p) 7→ p the projection onto the second factor. There exists
an open set U ⊆ Q such that for every q ∈ U the fiber π−1(q) is finite and has the same
cardinality d. Denote by Y ⊆ Z the Zariski closure of π−1(U). Y is not necessarily an
irreducible variety but we assume this for now.

The map π : Y → Q is a branched cover with of degree d and U is the set of regular
values. Furthermore, there exists an open cover (Ωβ)β of U such that for each β, the
fiber π−1(Ωβ) is a disjoint union of d open sets in π−1(U) such that each set is mapped
homeomorphically onto Ωβ. The map π|U : π−1(U)→ U is a d-sheeted covering space.

We say that a path γ̂ : [0, 1] → Y is a lift of the path γ : [0, 1] → U if π|U ◦ γ̂ = γ.
When the start and endpoint of γ coincide, γ(0) = γ(1), then γ is a loop based at γ(0). The
path lifting property for a covering space states that for any path γ : [0, 1] → U and any
q̂ ∈ π−1(U) with π(q̂) = q = γ(0) there is a unique path γ̂ : [0, 1]→ π−1(U) ⊆ Y such that
γ̂ is a lift of γ and γ̂(0) = q̂. Since π|U is a d-sheeted covering space, there are d distinct
paths γ̂1, . . . , γ̂d lifting γ. As a result, for a loop γ we get for all 1 ≤ i ≤ d, γ̂i(0) = γ̂j(1)
for some 1 ≤ j ≤ d. Thus, the loop γ induces a permutation of the fiber over γ(0).

Now consider the fundamental group π1(U, q) of U based at q ∈ U . It follows that we
have a group homomorphism ϕ : π1(U, q) → Sd where Sd is the symmetric group on d
elements. The image of ϕ is the monodromy group associated to π−1(q). It acts on the
fiber π−1(q) by permuting the solutions of Fq.

The construction of the monodromy group holds for an arbitrary covering space with
finitely many sheets and relied purely on topological arguments. From the construction also
follows that the monodromy group is a transitive subgroup of Sd whenever Y is connected.
In our setting, this is equivalent to the condition that Y is irreducible.

Lemma 3.9. The monodromy group of an irreducible branched cover π : Y → Q is transi-
tive.

Proof. Let x, y ∈ π−1(q) for some q ∈ U . The set π−1(U) is path-connected since Y is
irreducible. Thus, there exists a path γ̂ with γ̂(0) = x and ˆγ(1) = y. The statement follows
since the projection γ = π ◦ γ̂ of γ̂ is a loop in U .
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3.5.2 Monodromy Solve

In the previous subsection, we assumed that the variety Y is irreducible. However, this is not
necessarily the case. In general, Y has finitely many top-dimensional irreducible components
Y1, . . . , Y`. For each irreducible component Yk there exists an open set Uk ⊆ Q such that
for every q ∈ Uk the fiber π|−1

Yk
(q) has the same cardinality dk. Also note that for each Yk

the map π|Yk : Yk → Q, is dominant (its image is dense). The results from the previous
subsection hold for each component Yk separately.

Given an initial point (x0, p0) ∈ Yk with p0 ∈ Uk, we want to fill the fiber π|−1
Yk

(p0). For
this, we use the monodromy group associated with the fiber by repeatedly tracking solutions
of Fp0 around loops γi based at p0.

If Q = Cm, then we can construct a loop γ by choosing randomly p1, p2 ∈ Cm and define

γ(t) =


(1− 3t)p0 + 3tp1 0 ≤ t ≤ 1

3
(2− 3t)p1 + (3t− 1)p2

1
3 < t ≤ 2

3
(3− 3t)p2 + (3t− 2)p0

1
3 < t ≤ 2

3

The image γ([0, 1]) of the constructed loop is with probability one contained in Uk following
Lemma 3.3. The algorithm doesn’t require that Q = Cm, but then it is necessary to provide
an oracle that generates loops γ(t) : [0, 1]→ Uk based at p0. We track a zero of Fp0 along
γ(t) by performing the parameter homotopy H(x, t) = F (x; γ(t)).

We start with the set S = {x0} and a first loop γ1. We track each element of S along the
loop γ1 resulting in the set S′. If S 6= S′, then the procedure is repeated with S := S ∪ S′.
This continues until S = S′. At this point, we can generate a new loop γ2 and repeat the
above procedure with the difference that the solutions are now tracked along the loop γ2.
This procedure can be continued infinitely but at some point the set S ×{p0} and π|−1

Yk
(p0)

are identical and we successfully filled the fiber. If we know the correct number of solutions,
then we can stop the computation as soon as the cardinality of S reached this number.
Otherwise, we have to rely on a heuristic stopping criterion. The most common heuristic is
to stop the procedure if for K loops no new solutions were found. A typical value for K
is 5. In certain situations, it is possible to avoid the heuristic stopping criterion and to use
instead a trace test as stopping criterion. See Section 3.6 for a description of the trace test.
Various improvements to the outlined algorithm are presented in [DHJ+18].

The monodromy method is only a probabilistic method. Thus, what is the expected
number of loops we need to generate until the fiber is saturated? In [DHJ+18], this question
is partially addressed. For this, the authors consider the equivalent problem of what the
expected number ` of loops γ1, . . . , γ` is such that the loops generate the monodromy group
associated to π|−1

Yk
(p0). For their result, they have the very simplified assumptions that the

monodromy group is the full symmetric group on dk elements and that the monodromy
loops γi are picked uniformly. With these assumptions, they show that the expected value is
finite and asymptotically approaches 2 as dk →∞. In practice, these simplified assumptions
are often not given and the number of loops necessary varies depending on the particular
problem.
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3.5.3 Practical Considerations

The monodromy method provides a probabilistic method to compute isolated zeros of a
parameterized polynomial system F (x; p). To compute all isolated solutions of F for a
general parameter value, this method requires that the incidence variety Z defined in (3.9)
has a single top-dimensional irreducible component Y . For many applied problems, this is
the case and so it is reasonable to start from this assumption. Additionally, if F is linear
in the parameters, then Z always has only a single top-dimensional irreducible component
[DHJ+18, Remark 2.2]. Even if there is not only a single top-dimensional irreducible com-
ponent the monodromy method is still applicable but the result depends on the component
the initial point lies on. This is not necessarily a downside of the method. Sometimes there
are multiple irreducible top-dimensional components but only one contains isolated solutions
relevant to the particular problem. In this case, the monodromy method allows computing
only the relevant isolated solutions.

The monodromy method has a major advantage compared to a direct method as, e.g, the
polyhedral homotopy. It is much more resilient against numerical problems. If in a polyhedral
homotopy a path cannot be tracked due to numerical problems, then this results possibly in a
missing solution that can only be recovered by rerunning the whole computation. In contrast,
if a solution cannot be tracked along a loop during the monodromy method, then the missed
solution can still be recovered as the result of another, numerically better behaved, loop at
some later point. Another advantage of the monodromy method is that the path tracking
is simpler since by design no solution path diverges or has a singular endpoint.

Algorithm 3.10 FindStartPair
Input: A parameterized polynomial system F : Cn ×Cm → CN and a maximal number of tries M .
Output: If successful, an approximation of pair (x, p) ∈ Cn×Cm such that F (x; p) = 0. Otherwise,

false.
1: procedure FindStartPair(F,M)
2: Consider F as a system F̂ in n+m variables and with no parameters.
3: k ← 0
4: while k < M do
5: Construct y ∈ Cn+m by drawing each entry from a complex Normal distribution
6: Perform generalized Newton method for F̂ starting at y
7: if Newton method successfull then
8: Return the last Newton iterate as a start pair (x, p)
9: end if

10: k ← k + 1
11: end while
12: Return false
13: end procedure

To start the monodromy method, an initial start pair (x0, q0) ∈ Z is necessary. We
assume in the following Q = Cm. If for a general x0 ∈ Cn the map p → F (x0; p) is
affine linear, then a start pair can be computed using linear algebra. Otherwise, a start pair
can also often be constructed by insight into the concrete problem. Assuming that Y has
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only a single top-dimensional irreducible component, it is also possible to use the algorithm
outlined in Algorithm 3.10. The algorithm performs for a parameterized polynomial system
a random search for a start pair by repeatedly sampling points and performing Newton’s
method. Although the algorithm is very simple, for many problems a start pair is reliably
found with less than 200 tries.

3.6 Certification and Trace Test
So far, we discussed numerical methods to compute (all) isolated zeros of a polynomial
system F . Since we use numerical methods, we do not obtain exact zeros of F but rather
numerical approximations. For many applications, this is sufficient. But for some applica-
tions, in particular in pure mathematics, we want to certify that the obtained approximations
correspond to actual zeros of F . Additionally, we want to certify that we found a certain
number of distinct zeros, establishing a lower bound on the number of solutions of F .

It is of great interest to also certify that we found all isolated solutions of F . Unfortunately,
this is so far only possible if an upper bound is already established and the lower bound
obtained from the certification routine matches the upper bound. Establishing an upper
bound for a polynomial system based on a computational method that does not involve
Gröbner basis computations is an important open problem. A numerical method to test
whether all solutions are found is given by the trace test. However, the trace test does not
produce a rigorous certificate. The result of the trace test can be interpreted similarly to
the numerical computation of the smallest eigenvalue of a matrix. If the computed smallest
eigenvalue is on the order of the machine precision, then you probably conclude that the
matrix is singular. But this is not a proof (or certificate) that the matrix is singular.

3.6.1 Certification

We focus on two strategies to certify solutions to square polynomial systems. Smale’s α-
theory [Sma86] and Krawczyk’s method [Moo77]. The restriction to square polynomial
systems is necessary since to certify solutions to overdetermined systems additional global
information is necessary. In [DHS20], the authors develop various techniques to certify
overdetermined systems requiring different global information. A certification technique
based on Krawczyk’s method is presented in Chapter 5. There, we also demonstrate an
implementation of Krawczyk’s method in HomotopyContinuation.jl that provides a sig-
nificant computational improvement over the existing certification methods based on Smale’s
α-theory. However, since Smale’s α-theory only requires data from one point, it has valuable
features for the theory of computation. In particular, it is the building block for the complex-
ity analysis of polynomial homotopy continuation methods [BP09, BC11, BL13, Lai17] and
certified path tracking algorithms [BL13].

In [Sma86], Smale introduced the notion of an approximate zero, the α-number and the
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α-theorem. For a square polynomial system F in n variable, consider the Newton iteration

JF (x(j))∆x(j) = F (x(j))
x(j+1) = x(j) −∆x(j) , j = 0, 1, 2, . . .

starting at the initial guess x(0) ∈ Cn where JF is the Jacobian of F . An approximate zero
of F is any point x(0) ∈ Cn such that Newton’s method converges quadratically towards a
zero of F . This means that the number of correct significant digits roughly doubles with
each iteration of Newton’s method.

Definition 3.11 (Approximate zero). The point x(0) ∈ Cn is an approximate zero of F if
the Newton iterates x(j) are defined for j = 1, 2, . . . and satisfy

‖∆x(j)‖ ≤
(1

2

)2j−1
‖∆x(0)‖ .

If x(0) is an approximate zero, then the true zero x∗ ∈ Cn of F to that the iterates are
converging is the associated zero of x(0).

Smale’s α-theorem gives a sufficient condition for x(0) to be an approximate zero. The
theorem uses

γ(F, x) = sup
k≥2

∥∥ 1
k! JF (x)−1DkF (x)

∥∥ 1
k−1 and β(F, x) = ‖JF (x)−1F (x)‖ (3.10)

where DkF is the tensor of order-k derivatives of F and the tensor J−1
F DkF is understood

as a multilinear map A : (Cn)k → Cn.

Theorem 3.12 (Smale’s α-theorem [Sma86]). There is a naturally defined number α0 ap-
proximately equal to 0.1307 such that if α(F, x(0)) := β(F, x(0)) γ(F, x(0)) < α0, then x(0)

is an approximate zero of F .

To avoid the computation of the γ-number, Shub and Smale [SS93] derived an upper
bound for γ(F, x) that can be computed exactly and efficiently. Hence, one can decide
algorithmically whether x is an approximate zero using only the data of the point x itself and
F . Hauenstein and Sottile implemented these ideas in the software alphaCertified [HS12].

3.6.2 Trace Test

The trace test was first introduced in [SVW02] by Sommese, Verschelde, and Wampler and
recently generalized in [LRS18] by Leykin, Rodriguez, and Sottile to subvarieties of products
of projective spaces. Suppose we have an irreducible one-dimensional variety X ⊆ Cn. The
intersection of X with a general hyperplane L consists of deg(X)-many points. The trace
of X with respect to the hyperplane L is the coordinate-wise sum of the points in L ∩X.
Let l(x) be an affine linear polynomial defining L. Denote by Lt the zero set of l(x) + t.
Lt is a hyperplane that depends linearly on t and the trace of X with respect to Lt depends
on t. We have the following result.
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Proposition 3.13. [SVW02, LRS18] Using the notation and definitions above, the trace
of X with respect to Lt is affine linear in t. Moreover, the coordinate-wise sum of any
non-empty proper subset of X ∩ Lt is not affine linear in t.

This leads to the idea of the trace test. Given a subset W ⊆ X ∩ L, denote by Wt the
points obtained by tracking W from X ∩L0 to X ∩Lt. By construction we have W = W0.
Also, denote by w(t) the sum of the points of Wt. Following Proposition 3.13, w(t) is an
affine linear function if and only if Wt = X ∩Lt. Since Wt is the result of tracking W along
X ∩Lt, it follows that w(t) is an affine linear function if and only if W = X ∩L. The trace
test computes for a general τ ∈ C\{0} the points w(0), w(τ) and w(−τ) and tests whether
these three points are colinear. By our previous argument, this is with probability one only
the case if W = X ∩ L. A numerical stable method to test this is to compute the singular
values σ1 ≥ σ2 ≥ σ3 of the matrix[

w(0) w(τ) w(−τ)
1 1 1

]
.

Here, a row of ones is appended to account for the case that X is a plane curve. The
smallest singular value σ3 is zero if w(t) is affine linear. Thus, a good numerical colinearity
test is to check that for the computed singular values the value of σ3/σ1 is on the order of
the machine precision.

Above we assumed that X ⊆ Cn is a one-dimensional affine variety. But this is not nec-
essary and the trace test can be extended to positive-dimensional irreducible affine varieties
by replacing Lt with a pencil of affine linear spaces Mt such that codim(M0) = dim(X).
A pencil of affine linear spaces is a family Mt, t ∈ C, of affine linear spaces that depends
affinely on the parameter t. Mt is the span of an affine linear space H and a point t on a
line h that is disjoint from H.

So far, the presented trace test does not apply to isolated solutions of a general param-
eterized polynomial system F (x; p). For this, we consider again for some irreducible variety
Q ⊂ Cm the incidence variety

Z = {(x, p) ∈ Cn ×Q |F (x; p) = 0} ⊆ Cn ×Q .

and the projection π : Z → Q, (x, p) 7→ p onto the second factor. We consider an irreducible
subvariety Y ⊆ Z with the property that there exists an open set U ⊆ Q such that for
all q ∈ U the fiber π|−1

Y (q) is finite and has the same cardinality d. In Section 3.5, we
demonstrated how the monodromy method allows us to compute all elements of π|−1

Y (q) for
q ∈ U . But we had the difficulty that we needed a heuristic to stop the computation.

If U is non-empty, then the variety Y ⊆ Cn ×Q is an m-dimensional irreducible variety.
Consider the closure Y of Y in the product Pn×Pm of projective spaces Y . In [LRS18], the
authors give a trace test for subvarieties of products of projective spaces. Dehomogenizing the
procedure allows us to give a trace test for Y . We follow the approach outlined in [MdCR17].

In a first step, we intersect Y with a linear space Λ of codimension m − 1 defined by
m − 1 general affine linear polynomials G in p resulting in the one-dimensional subvariety
Y ∩Λ ⊆ Y ⊆ Cn ×Cm. This dimension reduction is an application of a version of Bertini’s
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theorem [LRS18, Theorem 12] and preserves the irreducibility of Y . Whereas we previously
intersected with an affine linear space, we now intersect with an affine bilinear space B
defined by the product of two affine linear polynomials `1(x) and `2(x) in the unknowns x
and p respectively. Since we reduced to a curve in Cn+m ∼= Cn × Cm, we can apply again
Proposition 3.13. That is, if we define the family Bt of bilinear spaces by `1(x)`2(p) + t,
then the trace of Y ∩ Λ with respect to Bt is affine linear in t for the x and p coordinates.
Moreover, the coordinate-wise sum for any proper non-empty subset of Y ∩ Λ ∩ Bt is not
affine linear in t.

Now assume we attempted to compute with the monodromy method all elements of
π|−1
Y (q) for some q ∈ U and obtained as a result the subset W ⊆ π|−1

Y (q). To check for
the completeness of W , we want to apply the trace test. For this, we need to choose G(p)
and `2(p) such that q is the unique solution of G(p) = `2(p) = 0. After choosing a general
affine linear polynomial `1(x), we need to start a second monodromy computation for the
polynomial system

T (x, p; t) =

 F (x, p)
G(p)

`1(x)`2(p) + t


at the parameter value t = 0. The points W × {q} are solutions to T0 and serve as start
solutions for the monodromy computation. At some point the monodromy computation
recovers Y ∩Λ∩B0 ⊆ Cn×Cm. This can be verified by testing that the trace of Y ∩Λ with
respect to Bt is colinear. Finally, if the trace is colinear and W × {q} = Y ∩ (Cn × {q}),
then W = π|−1

Y (q) and the first monodromy computation found all solutions.

3.7 Witness Sets
So far, we focused on computing isolated solutions of a polynomial system. Now we want to
briefly discuss the numerical solution of polynomial systems F whose zero sets are positive-
dimensional. Before we can compute a positive-dimensional zero set V(F ) ⊆ Cn, we need
a suitable data structure to represent V(F ) on a computer. This data structure is a witness
set [SW05, Section 13.3].

Definition 3.14 (Witness set). A witness set for an irreducible variety X ⊆ Cn is a triple
(F,L, S) where F is polynomial system such that X is an irreducible component of V(F ),
L ⊆ Cn is a general affine linear space with codim(L) = dim(X) and S = X ∩ L.

If X is a reducible variety with top dimensional irreducible components X1, . . . , X`, then
a witness set for X is the triple (F,L, S) where S = S1 ∪ · · · ∪ S` such that (F,L, Si) is a
witness set for Xi.

In a witness set W = (F,L, S) for a variety X ⊆ V(F ), we refer to L as a witness slice
and to S as witness points. If L is a general affine linear space, then the cardinality of S is
the degree deg(X) of X.

We can obtain a witness set for the k-dimensional components of V(F ) by computing
the isolated solutions S of F (x) = Ax + b = 0 where A ∈ C(n−k)×n, b ∈ Cn−k and
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L = V(Ax+ b). To verify that the tuple (F,L, S) constitutes a witness set W , we can use
the trace test described in Section 3.6.2. Given a witness set W = (F,L, S), we can obtain
a witness set for a different linear space L′ by moving L onto L′ and tracking the solutions
S as the linear space is moved. The result is the solution set S′ and another witness set
W ′ = (F,L′, S′).

It is also possible to compute a collection of witness sets W1, . . . ,W` where each Wi

corresponds to an irreducible component Xi of the irreducible decomposition X1∪· · ·∪X` =
V(F ). The methods to compute such a collection are of great importance for numerical
algebraic geometry but they are not a focus of this thesis. We refer the interested reader to
[SW05, Chapter 13–15].

In applications, many varieties of interest are defined as projections of other varieties.
Because witness sets are geometric, they behave well with respect to projections. Consider
an irreducible variety Z ⊆ V(F ) ⊆ Cn and a coordinate projection π : Cn → Ck. We are
interested in X = π(Z). This is an irreducible variety since Z is irreducible. Getting defining
equations for π(Z) is a very challenging symbolic computation. However, a pseudo-witness
set allows us to perform computations with π(Z) without the need to compute defining
equations for it. The notion of pseudo-witness set was introduced in [HS10].
Definition 3.15. A pseudo-witness set for a variety X ⊆ Ck defined as the Zariski closure
π(Z) of an irreducible variety Z ⊆ V(F ) with dim(Z) = dim(X) and coordinate projection
π : Cn → Ck is the quadruple (F, π, L,W ) where W = X ∩ π−1(L).
Remark 3.16. A pseudo-witness set actually performs computations ‘upstairs’ on Z and not
on X.

Often, it is the case that a variety X ⊆ Ck is described as as the image X = ϕ(Z) of
a projection ϕ : Cn → Ck where the dimension of Z is larger than its image. To construct
a pseudo-witness set for X, it is sufficient to reduce Z to a lower dimensional variety by
intersecting it with a linear space M ⊆ Cn of correct dimension such that X = ϕ(Z ∩M)
and dim(Z ∩M) = dim(X).

3.8 Conclusion
In this chapter, we discussed the foundations for the numerical solution of polynomial sys-
tems. First, we focused on the computation of isolated solutions of a polynomial system.
For this, we introduced the general framework of a parameter homotopy. A parameter ho-
motopy is a powerful tool that allows us to find all isolated zeros of a polynomial system
by embedding the system into a suitable family of polynomial systems. We discussed two
cases of the parameter homotopy that apply to any square polynomial system. These two
cases are the total degree and the polyhedral homotopy. We also described the monodromy
method. The monodromy method is a probabilistic method for computing the isolated zeros
of a polynomial system that allows us to solve problem which are infeasible with a total
degree or polyhedral homotopy. Complementary to the computation of isolated solutions,
we discussed the certification of the obtained numerical solutions. Similarly, we introduced
the concept of a trace test. The trace test gives us a possibility to verify, but not to certify,
that we found all isolated solutions. Finally, we also discussed the concept of a witness set
that allows describing positive-dimensional varieties. Together, these concepts give us a solid
foundation to solve a wide range of problems appearing in applications.
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4 Mixed Precision Path Tracking

This chapter is based on the article “Mixed Precision Path Tracking for Polynomial Homotopy
Continuation” [Tim20] by Sascha Timme. The article is currently under review. A preprint
is available at https://arxiv.org/abs/1902.02968.

Recall from Chapter 3 that a critical step in the homotopy continuation method is to
track a solution x0 ∈ Cn of a homotopy H(x, t) : Cn × C → Cn at t = 0 to a solution
at t = 1. A solution x0 at t = 0 gives rise to a solution path x(t) implicitly defined by
the conditions

H(x(t), t) = 0 for all t ∈ [0, 1) and x(0) = x0 . (4.1)

In order to track a path x(t), the problem (4.1) is treated as a sequence of problems

H(x(tk), tk) = 0 , k = 0, 1, 2, . . . (4.2)

with an (a-priori unknown) subdivision 0 = t0 < t1 < . . . < tM = 1 of the interval [0, 1].
Each of the problems in (4.2) is then solved by a correction method, usually Newton’s
method, under the assumption that a prediction method, e.g., Euler’s method, provides a
good starting point. Often, the choice of step size ∆tk = tk+1 − tk is given by an adaptive
step size control. The step size must be chosen appropriately: if the step size is too large,
the prediction can be outside the zone of convergence of the corrector, while a too small
step size means progress is slow. There have been many efforts to design such adaptive step
size controls [SC87,KX94,GS04].

In the context of polynomial homotopy continuation methods, two phenomena need par-
ticular attention. Polynomial systems often have singular solutions, and thus, the paths
leading to these solutions are necessarily ill-conditioned at the end. While endgame meth-
ods [BHS11b,MSW90,MSW92b,MSW92a] exist to compute singular solutions, these still
require to track the solution path sufficiently close to the singularity. Usually, homotopies
guarantee, with probability one, that no path passes through a singularity before reaching
its endpoint. However, there is a non-negligible chance that a near-singular condition is
encountered during the tracking.

Also, if two different solution paths are near to each other, then this can cause path
jumping. That is, the solution that is tracked ‘jumps’ from one path to another. The typical
reason is that starting from a point on the tracked path, the prediction method returns a
point that is, according to the correction method, a numerical approximation of a point
on a different path. A possible result of path jumping is that not all isolated solutions of
a polynomial system are computed. Recently, Telen, Van Barel and Verschelde [TVBV20]
introduced an algorithm that is very robust against path jumping. An implementation of this

31

https://arxiv.org/abs/1902.02968


algorithm is available in the software package PHCpack [Ver99].
Therefore, path tracking algorithms are required to reduce the risk of path jumping and

they need to be able to handle ill-conditioned situations during the tracking. Existing software
packages, e.g., Bertini [BHSW] and PHCpack, use a version of the following path tracking
algorithm. The algorithm has the following parameters: An initial step size ∆t > 0, a
number of corrector iterations N ≥ 1 allowed per step, a step adjustment factor λ ∈ (0, 1),
a step expansion integer E ≥ 1, and a minimum step size ∆tmin. Additionally, there is a
tracking tolerance ε > 0. This means that for a given t an approximate solution x ≈ x(t)
has to satisfy a normwise absolute error ‖x− x(t)‖∞ ≤ ε.

Given an approximate solution x ≈ x(t), the prediction method provides an initial guess
x̂(∆t) ≈ x(t+ ∆t). Then, Newton’s method iteratively improves the approximation x̂(∆t).
If the required tracking tolerance ε is achieved with a most N iterations, then the solution is
updated and t = t+ ∆t. If there are E successes in a row, then the step size is expanded to
∆t = λ−1∆t. If on the other hand the tolerance is not achieved with at most N iterations,
then the step size is reduced to ∆t = λ∆t. If ∆t < ∆tmin, the algorithm terminates with a
failure. Otherwise, the procedure is repeated until t = 1 is reached.

The key to avoiding path jumping is to allow only a small number of Newton iterations,
typically only N = 2 or N = 3. In practice, this is often sufficient for the initial guess x̂(∆t)
to stay within a small enough region surrounding the path such that no path jumping occurs.
However, if two paths are closer than the required tracking tolerance ε for some t∗ ∈ (0, 1),
then this algorithm tends to fail for these paths. This is shown in the computational ex-
periments in Section 4.4 for two different examples. Therefore, it is necessary to choose
the path tracking tolerance ε smaller than the minimal pairwise distance of any two paths.
However, knowing the optimal choice of ε a priori is impossible. Thus, one has to use either
a pessimistic value for ε or resort to trial and error. But choosing ε small does not only slow
down the tracking of all paths, it also can result in new tracking failures. The reason for
this is that Newton’s method in floating-point arithmetic cannot always produce solutions
whose relative normwise error is smaller than ε. This was shown by Tisseur in [Tis01] and is
explained in detail in Section 4.1.2.

To avoid tracking failures due to insufficient precision, Bates, Hauenstein, Sommese, and
Wampler [BHSW08] developed an adaptive precision version of the above-described path
tracking algorithm. During the tracking, the algorithm dynamically changes the working
precision such that Newton’s method can theoretically always produce solutions accurate
enough for the desired tracking tolerance. This eliminates the problem of insufficient precision
in exchange for a possibly high computational cost. But it also still leaves open the problem
of picking a suitable tolerance ε.

In this chapter, we introduce a new path tracking algorithm, Algorithm 4.14, that does
not require the choice of a path tracking tolerance ε or a maximal number N of corrector
iterations allowed per step. This allows the algorithm to handle numerically challenging
situations. The key idea is to use a more intrinsic measure for accepting an initial guess in
the Newton corrector: An initial guess x̂(∆t) should only be accepted if the Newton iterates
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x̂(∆t) = x(0), x(1), x(2), . . . satisfy

‖x(j+1) − x(j)‖ ≤ a2j−1‖x(1) − x(0)‖ (4.3)

for j = 1, 2, . . . and some fixed constant a ∈ (0, 1
2 ]. If the initial guess satisfies (4.3), then it

is an approximate zero. This notion was introduced by Smale [Sma86] for a = 1
2 and plays

an important role in the complexity analysis of polynomial homotopy continuation methods
[BC11, Lai17]. Based on this idea, we develop in this Chapter a new Newton corrector
algorithm, Algorithm 4.5. The algorithm rejects an initial guess if (4.3) is not satisfied for
some j = 1, . . . ,m where m is dynamically chosen as the maximal number of iterations for
which (4.3) can be satisfied in fixed precision floating-point arithmetic.

The proposed path tracking algorithm combines the new Newton corrector algorithm with
an adaptive step size control that chooses ∆t based on local geometric information. The
step size control extends an adaptive step size control developed by Deuflhard [Deu79] and
combines it with the insight of [TVBV20] to use Padé approximants as prediction meth-
ods. In particular, the algorithm builds a local understanding of the region of convergence
of Newton’s method and following Telen, Van Barel and Verschelde [TVBV20] obtains an
estimate of the distance to the closest singularity. This keeps the risk of path jumping
low, but the algorithm cannot guarantee that path jumping does not happen. To handle
numerically challenging situations, the algorithm uses mixed-precision arithmetic. That is,
while the bulk of the computations is performed in double precision some computations
are performed, if necessary, in extended precision. A version of this algorithm is imple-
mented HomotopyContinuation.jl .

This chapter is organized as follows. Section 4.1.1 reviews a Kantorovich style convergence
theory of Newton’s method and Section 4.1.2 develops a new Newton corrector algorithm,
Algorithm 4.5, based on requirement (4.3). In Section 4.2, the use of Padé approximants
as prediction method is developed. In Section 4.3, the results from the previous sections
are used to develop an adaptive step size control. Finally, the new path tracking algorithm,
Algorithm 4.14, is stated. The algorithm’s effectiveness and ability to handle challenging
paths is shown through several numerical experiments in Section 4.4.

4.1 Newton’s Method: Theory and Computational Aspects
The path tracking algorithm for a path x(t) consists of three main components: An adaptive
step size routine that provides a step size ∆t, a predictor that produces an initial guess x̂ of
x(t+ ∆t), and a corrector that takes x̂ and returns either an approximation of x(t+ ∆t) or
rejects x̂. This section focuses on Newton’s method as a corrector. The goal is to understand
the size of the region of convergence of Newton’s method as well as the behavior of Newton’s
method in floating-point arithmetic and to translate this into a Newton corrector algorithm.
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4.1.1 Convergence results

Let D ⊆ Cn an open set. Let F : D ⊆ Cn → Cn be an analytic function and JF : Cn → Cn
its Jacobian. Consider the Newton iteration

JF (x(j))∆x(j) = F (x(j))
x(j+1) = x(j) −∆x(j) , j = 0, 1, 2, . . . (4.4)

starting at the initial guess x(0) ∈ D. In 1948 Kantorovich [Kan48] already showed sufficient
conditions for the convergence of Newton’s method and the existence of solutions. He
also showed the uniqueness region of solutions and provided error estimates. A particular
property of Newton’s method is that the iterates (4.4) are invariant under general linear
transformations of F . That is, given a start value x(0) ∈ D and A ∈ GLn(C) the Newton
iterates of AF (x) and F (x) coincide. This property is referred to as affine covariance
[Deu11]. In the following, an affine covariant version of a Kantorovich style convergence
theorem for Newton’s method is given. The statement is due to Deuflhard and Heindl [DH79]
with error bounds from Yamamoto [Yam85].
Theorem 4.1 (Newton-Kantorovich [DH79,Yam85]). Let F : D ⊆ Cn → Cn be analytic.
For some x(0) ∈ D, assume that JF (x(0)) is invertible and that for all x, y ∈ D

‖JF (x(0))−1(JF (x)− JF (y))‖ ≤ ω‖x− y‖,
‖∆x(0)‖ = ‖JF (x(0))−1F (x(0))‖ ≤ β

and h0 := ωβ ≤ 1
2 .

Let r∗ = (1−
√

1− 2h0)/ω and S̄(x(0), r∗) = {x | ‖x− x(0)‖ ≤ r∗} ⊆ D. Then:
1. The iterates (4.4) are well-defined, remain in S̄(x(0), r∗) and converge to a solution
x∗ of F (x) = 0.

2. The solution is unique in S(x(0), r∗∗) ∩D where r∗∗ = (1 +
√

1− 2h0)/ω.

Furthermore, assume h < 1
2 and define the recursive sequence hj = h2

j−1
2(1−hj−1)2 . Then also

the following error estimates hold.

‖∆x(j)‖ ≤ 1
2ω
√

1− 2hj√
1− 2h0

‖∆x(j−1)‖2, j = 1, 2, 3, . . . (4.5)

‖x(j) − x∗‖ ≤ 2‖∆x(j)‖

1 +
√

1− 2ω
√

1−2hj√
1−2h0

‖∆x(j)‖
, j = 0, 1, 2, . . . (4.6)

A drawback of the Newton-Kantorovich theorem is that it is not possible to obtain suffi-
cient conditions for the convergence of Newton’s method by only using data from the initial
guess x(0). Instead, local information about the Lipschitz constant ω is required. The ne-
cessity of local information motivated Smale to develop his α-theory [Sma86], which only
requires data from the initial guess x(0) to compute sufficient conditions for the convergence
of Newton’s method.
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Recall from Definition 3.11 the definition of an approximate zero. A point x(0) ∈ Cn is
an approximate zero of F if all Newton iterates x(j), j = 1, 2, . . . , are defined and satisfy

‖∆x(j)‖ ≤
(1

2

)2j−1
‖∆x(0)‖ .

Smale’s α-Theorem 3.12 gives a sufficient condition for x(0) to be an approximate zero.
It is also possible to give sufficient conditions for x(0) to be an approximate zero under

the assumptions of the Newton-Kantorovich Theorem 4.1.

Lemma 4.2. Using notation from Theorem 4.1, assume

h0 = ω‖∆x(0)‖ ≤ 2(
√

4a4 + a2 − 2a2) =: h(a)

for a parameter 0 < a < 1. Then, the contraction factors

Θj := ‖∆x
(j+1)‖

‖∆x(j)‖
≤ a2j , j = 0, 1, 2, . . . (4.7)

and the error bounds

‖∆x(j)‖ ≤ a2j−1‖∆x(0)‖ , j = 1, 2, . . . (4.8)

are satisfied. In particular, x(0) is an approximate zero if h0 ≤
√

2− 1.

Proof. From the error estimate (4.5) follows

Θj ≤
1
2ω
√

1− 2hj√
1− 2h0

‖∆x(j)‖ ≤ 1
2ω
√

1
1− 2h0

‖∆x(j)‖ (4.9)

= 1
2ω‖∆x

(0)‖
√

1
1− 2h0

j−1∏
`=0

Θj = h0

2
√

1− 2h0

j−1∏
`=0

Θ` .

From h0 ≤ 2(
√

4a4 + a2 − 2a2) < 1
2 follows h0

2
√

1−2h0
≤ a and therefore

Θj ≤ a
j−1∏
`=0

Θ` ≤ aa
∑j−1

`=0 2` = a2j .

Statement (4.8) follows from (4.7) by observing

‖∆x(j)‖
‖∆x(0)‖

=
j−1∏
`=0

Θ` ≤ a2j−1 .

The Newton-Kantorovich theorem and Smale’s α-theorem both give sufficient conditions
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for an initial guess to be an approximate zero. For the Newton-Kantorovich theorem, a
(local) estimate of the Lipschitz constant ω needs to be obtained. For Smale’s α-theorem,
the constant γ, defined in (3.10), needs to be computed. The path tracking algorithm
developed in this chapter is based on the Newton-Kantorovich theorem since a (rough)
estimate of ω can be computed with almost no additional cost during the Newton iteration.

A computational estimate [ω] of ω is

[ω] = 2 ‖∆x
(1)‖

‖∆x(0)‖2
. (4.10)

This can be seen as follows. Using the error estimate (4.5)

‖∆x(1)‖ ≤ 1
2ω
√

1− 2h1
1− 2h0

‖∆x(0)‖2

together with the observation 1−2h1
1−2h0

= (1− h0)−2 follows

‖∆x(1)‖ ≤ 1
2ω

1
1− ω‖∆x(0)‖

‖∆x(0)‖2

and this is equivalent to

2‖∆x(1)‖
‖∆x(0)‖2 + 2‖∆x(0)‖‖∆x(1)‖

≤ ω . (4.11)

The computational estimate (4.10) is now obtained by upper bounding (4.11) with

2‖∆x(1)‖
‖∆x(0)‖2 + 2‖∆x(0)‖‖∆x(1)‖

≤ 2 ‖∆x
(1)‖

‖∆x(0)‖2
= [ω] .

4.1.2 Computational Aspects and Floating-Point Arithmetic

After establishing the theoretical foundations of Newton’s method as well as a method to
obtain a computational estimate of the Lipschitz constant ω, these results are now used to
guide the development of a Newton corrector algorithm. For this, the behavior of Newton’s
method in floating-point arithmetic has to be taken into account.

Limit Accuracy. The following assumes the standard model of floating-point arithmetic
[Hig02, section 2.3]

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /

where u is the unit roundoff. In standard double precision arithmetic, u = 2−53 ≈ 2.2 ·
10−16. In [Tis01], Tisseur analyzed the limit accuracy of Newton’s method in floating-point
arithmetic. Let x∗ ∈ Cn be a zero of F with JF (x∗) non-singular, and let x(0) ∈ Cn be an
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approximate zero of F with associated zero x∗. In floating-point arithmetic, we have

x(j+1) = x(j) − (JF (x(j)) + Ej)−1(F (x(j)) + ej) + εj

where
• ej is the error made when computing the residual F (x(j)),

• Ej is the error incurred in forming JF (x(j)) and solving the linear system for ∆x(j),

• εj is the error made when adding the correction to x(j).
Assume that F (x(j)) is computed in the possibly extended precision ū ≤ u before rounding
back to working precision u and assume that there exists a function ψ depending on F , x(j),
u and ū such that

‖ej‖ ≤ u‖F (x(j))‖+ ψ(F, x(j), u, ū) .

Similarly, assume that the error Ej satisfies

‖Ej‖ ≤ uφ(F, x(j), n, u)

for some function φ that reflects both the instability of the linear solver and the error made
when forming JF (x(j)). Then the following statement holds [Tis01, Corollary 2.3].
Theorem 4.3 ([Tis01]). Let x(0) be an approximate zero with associated zero x∗, x∗ 6= 0,
assume that JF (x∗) is non-singular, satisfies uκ(JF (x∗)) ≤ 1

8 and assume that for all j

u‖JF (x(j))−1‖φ(F, x(j), n, u) ≤ 1
8 .

Then, Newton’s method in floating-point arithmetic generates a sequence of iterates x(j+1)

whose normwise relative error decreases until the first j for which

‖x(j+1) − x∗‖
‖x∗‖

≈ ‖JF (x∗)−1‖
‖x∗‖

ψ(F, x∗, u, ū) + u =: µ(x∗, u, ū) . (4.12)

In the following, the value µ(x∗, u, ū) is referred to as the limit accuracy. Theorem
4.3 shows that the limit accuracy is influenced by three factors: the working precision u,
the accuracy of the evaluation of the residual (in possibly extended precision ū), and the
conditioning of the Jacobian. The essential consequence of this is that Newton’s method
cannot always produce solutions whose normwise relative error is on the order of the working
precision u. From the error estimate (4.5) follows that if for a given j

‖∆x(j)‖ ≤ ω‖∆x(j−1)‖2

2
√

1− 2h0
≤ µ(x∗, u, ū)‖x∗‖ (4.13)

then the normwise relative accuracy of x(j) in floating-point arithmetic is only of order
µ(x∗, u, ū). Assume that for a given j (4.13) is satisfied. Then a computational estimate
[µ] of µ(x∗, u, ū) can be obtained by computing ‖∆x(j)‖/‖x(j+1)‖.
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The following lemma shows that using extended precision improves the limit accuracy.

Lemma 4.4. For extended precision ū ≤ u, it holds µ(x∗, u, ū) ≈ µ(x∗, u, u) ūu + u.

Proof. From Section 4.3.2 in [BHSW08] follows that for a system of polynomials given
as a straight line program ψ(F, x(j), u, ū) in Theorem 4.3 is a linear function in ū, i.e.,
ψ(F, x(j), u, ū) = ū

uψ(F, x(j), u, u). The statement then follows from (4.12).

If the working precision u is standard double-precision arithmetic, then computing with
extended precision can be accomplished by using double-double arithmetic. A double-double
number is represented as an unevaluated sum of a leading double and a trailing double,
resulting in a unit roundoff of 2−106 = u2. Bailey [Bai95] pioneered double-double arithmetic,
and implementations are nowadays available for a wide variety of programming languages
and architectures.

Assume that for a fixed parameter a ∈ (0, 1
2 ] the Newton iterates starting at the initial

guess x(0) are required to satisfy the contraction factors

Θj = ‖∆x
(j+1)‖

‖∆x(j)‖
≤ a2j j = 0, 1, 2, . . . .

If the Newton iterates are computed with precision ū = u then (4.13) implies together with
Lemma 4.2 that if

ωµ(x∗, u, u) > a2k−1h(a)‖x∗‖ (4.14)

then there does not need to exist an initial guess x(0) such that the first k contraction factors
are satisfied. Given a fixed k, for instance, k = 2, this gives a criterion when to use extended
precision. Similarly, if the Newton iteration is performed with extended precision, then it is
possible to use only working precision again if ωµ(x∗, u, u) < a2k−1h(a).

The working precision u is insufficient if the combination of the error in the evaluation
of the Jacobian and the instability in the linear system solver become too large. In this
case, a multi-precision path tracking algorithm as [BHSW08] is necessary. However, as
demonstrated in Section 4.4, using only double-precision arithmetic for the linear system
solver is sufficient for most applications. Nevertheless, even if the precision u is sufficient to
achieve the limit accuracy, the analysis of Tisseur also shows that the convergence speed of
Newton’s method can decrease due to a too unstable linear system solver. In this case, the
theoretical convergence speed may not be achieved, which in turn can lead to not satisfying
the required contraction factors. To circumvent this, the Newton updates are improved using
mixed-precision iterative refinement [Hig97] if ū < u. This stabilizes the linear system solver
sufficiently to achieve the theoretical convergence speed.

Stopping Criteria. Criteria for stopping the Newton iteration are now derived. Assume
that ω and the limit accuracy µ = µ(x∗, u, ū) are known. If for any j the contraction factor

Θj = ‖∆x
(j+1)‖

‖∆x(j)‖
≤ a2j (4.15)

is not satisfied, then the iteration is stopped and the initial guess is rejected. The iteration
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is stopped successfully at step j if the next update would be smaller than the limit accuracy,
i.e.,

ω‖∆x(j−1)‖2

2
√

1− 2h(a)
≤ ‖x(j)‖µ . (4.16)

An additional Newton update is computed to obtain a computational estimate of µ.
Scaling. Before the full Newton corrector algorithm is stated, a final point is addressed.

So far, a simple rescaling of variables can change the behavior of the algorithm since ω, µ and
‖∆x(j)‖ are not invariant under rescaling of variables. Additionally, if x∗ = 0 the accuracy
needs to be measured with an absolute, and not a relative, normwise error. A rescaling of
variables is formally the change of variables

y = D−1x, D = diag(d1, . . . , dn), di ∈ R>0 .

With x = (x1, . . . , xn) and |xi| 6= 0, the choice di ≈ |xi| results in new coordinates yi of
unit order. To deal with the case |xi| = 0 as well as with possible overflows in floating-point
arithmetic, an absolute threshold value dmin > 0 of the form

di = max{|xi|, dmin} (4.17)

has to be imposed. For instance, dmin = max(
√
umaxi |xi|, u). To not introduce rounding

errors, the scaling factors D should be powers of the floating-point radix β (β = 2 in the
case of IEEE-754 floating-point standard arithmetic). Instead of performing the change of
variables explicitly in Newton’s method, the size of the Newton updates can also be measured
with the weighted error ‖D−1∆x(j)‖ . Using the scaling factors D allows the algorithm to
perform independent of the initial provided variable scaling (assuming that the initial scaling
is not too extreme).

The Algorithm. Finally, a new Newton corrector algorithm, Algorithm 4.5, is stated.
The algorithm builds on the results developed in this section. The idea of the algorithm is
to reject an initial guess x(0) if the Newton iterates x(0), x(1), x(2), . . . do not satisfy

‖x(j+1) − x(j)‖ ≤ a2j−1‖x(1) − x(0)‖

for j = 1, 2, . . . ,m and some fixed constant a ∈ (0, 1
2 ]. Here, m is decided dynamically

based on equation (4.16). The rejection of an initial guess is performed using the slightly
stricter criterion (4.15). The algorithm needs as input estimates of the limit accuracy µ
and the Lipschitz constant ω and returns updated estimates of these quantities. During
the path tracking, estimates are available by using the returned estimates from the previous
steps. What to do at the beginning of the tracking, if these estimates are not available, is
addressed after the algorithm.

The algorithm requires estimates of the limit accuracy µ and the Lipschitz constant ω.
During the path tracking, the computational estimates for both of them are available by
using the computed estimates of the Newton corrector from the previous step. However, this
leaves open what to do for the first step. There are two possibilities. If the start solution
is the solution of a previous tracking, then computational estimates of µ and ω are already
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Algorithm 4.5 Newton Corrector
Input: F : Cn → Cn, x(0) ∈ Cn, a ∈ (0, 1

2 ], estimate [µ] > 0 of the limit accuracy µ, estimate
[ω] > 0 of ω, evaluation precision ū ≤ u, and positive scaling factors D such that the coordinates
of D−1x(0) are of unit order.

Output: Boolean indicating whether x(0) was accepted, approximation x̄ ∈ Cn of a zero x∗ of F ,
updated estimate of the (limit) accuracy µ at x∗, updated estimate of ω, number of updates j
and last contraction factor Θj−2.

1: procedure Newton(F, x(0), a, [µ], [ω], ū, D)
2: j ← 0
3: while true do
4: r ← Evaluate F at x(j) with precision ū and round result to precision u
5: Solve JF (x(j))∆x(j) = r
6: x(j+1) ← x(j) −∆x(j)

7: if j = 1 then
8: [ω]← 2 ‖D

−1∆x(1)‖
‖D−1∆x(0)‖2 . Compute ω estimate

9: end if
10: if j ≥ 1 and ‖D−1∆x(j)‖

‖D−1∆x(j−1)‖ > a2j−1 then . Check sufficient contraction
11: return (false, x(j+1), [µ], [ω], j + 1, ‖D

−1∆x(j)‖
‖D−1∆x(j−1)‖ )

12: else if ω‖D−1∆x(j)‖2

2
√

1−2h(a)
≤ [µ] then . Approaching limit accuracy

13: r ← Evaluate F at x(j+1) with precision ū and round result to precision u
14: Solve JF (x(j+1))∆x(j+1) = r
15: x(j+2) ← x(j+1) −∆x(j+1)

16: [µ]← ‖D−1∆x(j+2)‖ . Update of the limit accuracy
17: return (true, x(j+2), [µ], [ω], j+2, ‖D

−1∆x(j+1)‖
‖D−1∆x(j)‖ )

18: end if
19: j ← j + 1
20: end while
21: end procedure

available. If this is not the case, the following heuristic, Algorithm 4.6, to determine values
for [µ] and [ω] proved to be helpful. The idea is to add a small perturbation to the provided
start solution and to perform two Newton steps. If the perturbation is sufficiently small, then
the perturbed solution still converges to the provided start solution, and an estimate of [ω]
and [µ] can be obtained. As an added benefit, this provides a test to point out invalid start
solutions, e.g., due to user error. For simplicity, it is assumed that it is sufficient to compute
the residual with precision u.

Algorithm 4.6 Model Initialization Heuristic
Input: Candidate x(0) ∈ Cn, a ∈ (0, 1), and scaling factors D such that the coordinates of D−1x(0) are of

unit order.
Output: Boolean indicating whether the initialization was successful, estimate [µ] of the limit accuracy µ of

the associated zero of x(0), and an estimate [ω] of ω.
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1: procedure ModelInitialization(x(0), a, D)
2: v ← ‖D−1JF (x(0))−1F (x(0))‖+ u
3: ε←

√
v

4: for k ← 1 : 3 do . Try up to 3 different sizes of perturbations
5: x̄← x(0) + εD . Add relative perturbation
6: ∆0 ← JF (x̄)−1F (x̄)
7: x(1) ← x̄−∆0
8: ∆1 ← JF (x(1))−1F (x(1))
9: x(2) ← x(1) −∆1
10: if ‖D−1∆1‖/‖D−1∆0‖ < a then
11: [ω]← 2 D−1‖∆x(1)‖

‖D−1∆x(0)‖2

12: [µ]← ‖D−1∆1‖
13: return (true, [µ], [ω])
14: else . ω larger than ε, reduce ε
15: ε← εu2−k

16: end if
17: end for
18: return (false, [µ], [ω])
19: end procedure

4.2 Predictors and Padé Approximants
After carefully studying the Newton corrector in the previous section, we now shift the
attention to the predictor. Recall that the role of the predictor is to produce for a given step
size ∆t an initial guess x(0) such that the corrector converges sufficiently fast. The choice of
the step size ∆t will be addressed in the next section, but before it is essential to understand
the influence of ∆t on the distance of the initial guess x(0) to the solution path.

Consider the homotopy H(x, t) : Cn × C → Cn and a constant t̄ > 0. Given a solution
s ∈ Cn of the system H(x, 0) = 0, assume that there is a solution path x(t) : [0, t̄ ] → Cn
implicitly defined by the conditions

H(x(t), t) = 0 for all t ∈ [0, t̄ ] and x(0) = s . (4.18)

Also assume that Hx(x(t), t) is nonsingular for all t ∈ [0, t̄ ]. Then, x(t) can be extended to a
holomorphic function with H(x(t∗), t∗) = 0 for all t∗ in some nonempty open neighborhood
of 0. Without loss of generality, in the following only the situation at t = 0 is considered,
thus ∆t = t.

A predictor generates a prediction path x̂(t) : [0, t̄ ]→ Cn with x̂(0) = x(0) and they can
be classified by the local order of the prediction error ‖x̂(t)− x(t)‖.

Definition 4.7 (Local order of a predictor). A predictor is of local order p if there exists a
τ > 0 and a constant ηp ≥ 0 such that for all t ∈ [0, τ ]

‖x̂(t)− x(t)‖ ≤ ηptp .

The constant τ is the trust region of the predictor.
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Example. The Euler predictor x̂(t) = x(0) + tẋ(0) is of local order p = 2 with τ = t̄ since

‖x(t)− x̂(t)‖ = ‖x(t)− x(0)− tẋ(0)‖ ≤ 1
2 max
t∈[0,t̄ ]

‖ẍ(t)‖t2 .

There are many different families of predictors known in the literature, with the most fa-
mous ones probably being (embedded) Runge-Kutta methods. In [BHS11a], it is shown that
for polynomial homotopy continuation higher-order Runge-Kutta methods are substantially
more efficient than the Euler predictor. However, in the following another particular class
of predictors is considered: Padé approximants. See [BGM96] for an exhaustive treatment
of Padé approximants. The use of Padé approximants is strongly motivated by the recent
results from Telen, Van Barel, and Verschelde [TVBV20] where a path tracking algorithm is
developed that is very robust against path jumping. But it is to note that the use of Padé
approximants as predictors was already considered in [SC87].

Definition 4.8 (Padé approximant). Let x(t) =
∑∞
`=0 c`t

` be a convergent power series.
The type (L,M) Padé approximant is the rational function

[L/M ]x = a0 + a1t+ a2t
2 + · · ·+ aLt

L

1 + b1t+ b2t2 + · · ·+ bM tM

such that x(t) and [L/M ]x (considered as formal power series) satisfy

[L/M ]x − x(t) ∈ O(tL+M+1) .

Remark 4.9. A type (L,M) Padé approximant is a predictor of local order L+M + 1.
The following use of Fabry’s ratio theorem is the key result from [TVBV20] that is used

to obtain an estimate for the trust-region of a Padé predictor. Since x(t) is holomorphic
in a nonempty open neighborhood of 0, there is a coordinatewise expansion of x(t) as a
convergent power series around 0. Write xj(t) =

∑∞
`=0 c`t

` for the Taylor expansion of the
coordinate function xj(t) at 0. For sufficiently large L, the pole of the Padé approximant
[L/1]xj indicates the distance to the nearest singularity (also if it is a branch point). This is
seen as follows. A computation shows that if cL 6= 0,

[L/1]xj = c0 + c1t+ . . .+ cL−1t
L−1 + cLt

L

1− tcL+1/cL
. (4.19)

Hence the pole of [L/1]xj is cL/cL+1 (or it is∞ if cL+1 = 0). Fabry’s ratio theorem [Fab96]
now states that if the limit limL→∞ cL/cL+1 exists it is a singularity of x(t).

Theorem 4.10. Suppose that the coefficients of the power series
∑∞
`=0 c`t

` are such that
the limit limL→∞ cL/cL+1 = λ 6= 0 exists. Then, the series converges uniformly inside the
disk {|t| < |λ|} and λ is a singular point of xj(t) =

∑∞
`=0 c`t

`.

For a fixed L, the modulus |cL/cL+1| therefore can be assumed to be an approximation
of the distance to the nearest singularity of x(t) and a computational estimate of the trust-
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region τ of the Padé approximant. It is recommended to see Section 3 of [TVBV20] to learn
more about Padé approximants in the context of homotopy continuation.

For the computation of a Padé approximant of type (L,M), it is necessary to compute
the local derivatives x(`)(0) for ` = 1, . . . , L+M . For this, Mackens [Mac89] observed the
following useful identity.

Lemma 4.11 ([Mac89]). The local derivatives x(`)(t) can be computed using the formula

x(`)(t) = −Hx(x(t), t)−1R`(t) ,

where
R`(t) =

(
d
dλ

)`
H
(
x(t) +

∑`−1
i=1

1
i!x

(i)(t)λi, t+ λ
) ∣∣∣

λ=0
. (4.20)

In [Mac89], this identity is used for the computation of x(`)(0) by numerical differentiation.
A downside of numerical differentiation is that it can suffer from catastrophic cancellation
resulting in useless results. Instead of using numerical differentiation the expression (4.20)
can be computed efficiently and accurately by using automatic differentiation [GW08, Ch. 13].
In particular, the cost of computing R` using automatic differentiation is at most 2`2 +O(`)
times the cost of evaluating H by a straight-line-program. The dominating factor for the
accuracy of x(`)(t) is the forward error of the linear system solving. To ensure that computed
derivatives are sufficiently accurate, the forward error of the linear system solving should be
monitored and if necessary be reduced by using mixed-precision iterative refinement [Hig97].

A robust Padé approximant implementation also needs to handle the edge cases that
x

(`)
j (0) = 0 for some 1 ≤ j ≤ n and 1 ≤ ` ≤ L+M . In [GGT13], a robust algorithm is pro-

posed for computing Padé approximants. The provided implementation uses this algorithm
for the computation of the Padé approximants.

It is also possible to obtain an estimate of the local approximation error of a Padé ap-
proximant as was shown in [TVBV20]. By comparing for each coordinate function xj(t) the
coefficient of tL+M+1 in

(a0 + a1t+ . . .+ aLt
L)− (1 + b1t+ . . .+ bM t

M )(c0 + c1t+ c2t
2 + . . .)

it follows
e0,j = −(cL+M+1 + b1cL+M + . . .+ bMcL+1) .

Considering the Taylor expansion of [L/M ]xj at 0 it follows

xj(t)− [L/M ]xj (t) = e0,jt
L+M+1 +O(tL+M+2) .

Therefore, for a Padé approximant a computational estimate [ηL+M+1] of ηL+M+1 is

[ηL+M+1] = ‖D−1(e0,1, . . . , e0,n)‖ (4.21)

where D > 0 are the same scaling factors as used for the Newton corrector in Section 4.1.
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4.3 Step Size Control and Path Tracking Algorithm
After studying Newton’s method as a correction method in Section 4.1 and Padé approx-
imants as a prediction method in Section 4.2, the results are now combined to derive an
adaptive step size control. Afterward, the path tracking algorithm is stated.

Consider the homotopy H(x, t) : Cn × C → Cn with a given solution s ∈ Cn of the
system H(x, 0) = 0 and constant t̄ > 0. Assume there is a solution path x(t) : [0, t̄]→ Cn
implicitly defined by the conditions x(0) = s and (4.18), and assume that Hx(x(t), t) is
non-singular for all t ∈ [0, t̄ ]. Denote by x̂(t) : [0, τ̄ ]→ Cn the prediction path produced by
the Padé approximant. As in Section 4.2 only the situation at t = 0 is considered such that
∆t = t.

The goal of the step size routine is to provide a step size t such that the Newton iterates
x(j) starting at the initial guess x̂(t) = x(0) satisfy for j = 0, 1, 2, . . . the contraction factors

Θj = ‖∆x
(j+1)‖

‖∆x(j)‖
≤ a2j (4.22)

for a fixed parameter a ∈ (0, 1), for instance a = 0.2. Recall from Lemma 4.2 that if a ≤ 1
2 ,

then x̂(t) is an approximate zero. Assuming knowledge about the Lipschitz constant ω in a
neighborhood of the path x(t) and the theoretical quantities introduced in Section 4.2, it is
possible to give a maximal theoretical feasible step size tmax such that this is the case. The
approach to use the theoretical quantities ω, ηp, and τ to determine a maximal feasible step
size such that Newton’s method converges was pioneered by Deuflhard in [Deu79].
Theorem 4.12 ([DH79]). Let D ⊆ Cn such that for all x ∈ D and t ∈ [0, t̄ ], t̄ > 0,
the Jacobian Hx(x, t) is non-singular. Assume that for each t ∈ [0, t̄ ] there exists a convex
subset D(t) ⊆ D with x(t) ∈ D(t) where x(t) denotes the unique solution path in D× [0, t̄ ].
Let x̂(t) : [0, t̄ ]→ D denote a prediction path of order p with trust-region τ , i.e., with

‖x̂(t)− x(t)‖ ≤ ηptp for all t ∈ [0, τ ] .

Moreover, assume for all t ∈ [0, t̄ ] the affine covariant Lipschitz condition

‖Hx(x̂(t), t)−1(Hx(u, t)−Hx(v, t))‖ ≤ ω‖u− v‖ for all u, v ∈ D(t) .

For fixed h ≤ 1
2 , let tmax = min(t∗, τ, t̄) where

t∗ :=
(√

1 + 2h− 1
ωηp

)1/p

(4.23)

and for all t ≤ tmax let B(t) denote a ball around x̂(t) with radius (1 −
√

1− 2h)/ω
and assume B(t) ⊆ D(t). Then, for all step sizes t ≤ tmax the Newton iterates start-
ing at x̂(t) = x(0) are well-defined, remain in B(t), converge towards x(t) and satisfy
‖Hx(x̂(t), t)−1H(x̂(t), t)‖ ≤ h

ω .
Proof. For h = 1

2 , the statement is Theorem 1.3 in [Deu79]. The more general maximal step
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size (4.23) and the inequality ‖Hx(x̂(t), t)−1H(x̂(t), t)‖ ≤ h
ω follows from equations (1.14a)

and (1.14b) in the proof of Theorem 1.3 in [Deu79].

In Theorem 4.12, there is a choice of the parameter h ≤ 1
2 . If this is sufficiently small

then the contraction factors (4.22) are satisfied. The following corollary makes this precise.

Corollary 4.13. In Theorem 4.12, choose h ≤ h(a) = 2(
√

4a4 + a2 − 2a2) for a ∈ (0, 1).
Then, the Newton iterates starting at x̂(t) satisfy the contraction factors

‖∆x(j+1)‖
‖∆x(j)‖

≤ a2j .

Proof. Since ‖Hx(x̂(t), t)−1H(x̂(t), t)‖ ≤ h
ω , it follows h0 ≤ h and using Lemma 4.2 it

follows the statement.

If the step size is chosen according to Theorem 4.12, then path jumping cannot happen.
However, to obtain the theoretical quantities ω, ηp and τ is very hard. Instead the theoretical
quantities are replaced by easy to obtain computational estimates [ω], [ηp] and [τ ]. Using
the computational estimates and Corollary 4.13, an estimate [tmax] of the maximal feasible
step size tmax is given by

[tmax] = min
(

[t∗], βτ [τ ], t̄
)

(4.24)

where

[t∗] :=
(√

1 + 2h(a)− 1
βω[ω][ηp]

)1/p

where 0 < βτ < 1 and βω ≥ 1 are additional safety factors, for instance βτ = 0.75 and
βω = 10. Instead of choosing βω fixed it seems worthwhile to develop a more adaptive
criterion for choosing βω in the future.

Since [ηp] and [ω] are only lower bounds and [τ ] is only an upper bound for the theoretical
quantities, it is possible that the step size t = [tmax] is larger than tmax. Then it can happen
that the Newton corrector algorithm 4.5 rejects the initial guess since Θk > a2k for some k.
In this case, a suitable step size correction formula is

t′ =


√

1 + 2h(1
2a)− 1√

1 + 2h
(
Θ2−k
k

)
− 1


1/p

t (4.25)

which is a clear reduction since Θ2−k
k > a.

Before the path tracking algorithm is stated, the similarities and differences to the step size
control developed in [TVBV20] are stated. In [TVBV20], the authors develop an adaptive
step size control similar to (4.24) with the difference that their algorithm uses instead of [t∗]
the step size candidate ∆t1 computed as follows. For ∆t1, an estimate δ of the distance to
the nearest path is computed based on a second-order Taylor expansion around x(0). This
involves the computation of the Hessian of H and multiple singular value decompositions.
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Then ∆t1 = (β1δ/[ηp])1/p where β1 is a safety factor to unknown region of convergence of
Newton’s method, for instance β1 = 0.005.

Finally, the path tracking algorithm, Algorithm 4.14, is stated. It is assumed that the
computational estimates [ω] and [µ] for the start solution s are available. These are either
available as a result of a previous path tracking or by using Algorithm 4.6.

Algorithm 4.14 Path Tracking Algorithm
Input: Homotopy H(x, t) : Cn × C→ Cn, s ∈ Cn such that s is an approximate zero of G(x) := H(x, 0), estimates

[ω] and [µ] of ω and µ, a ∈ (0, 1
2 ], safety factors βω and βτ , minimal step size ∆tmin, type of Padé approximant

L.
Output: Approximate zero of F (x) := H(x, 1) or false if the tracking failed.
1: procedure Track(H, s, [ω], [µ], a, βω , βτ ,∆tmin, L)
2: (t,∆t)← (0,∞)
3: x← s
4: ū← u
5: Initialize scaling factors D using x and (4.17)
6: while t < 1 do
7: Compute x(1)(t), . . . , x(L+2)(t) from (x, t) by using the identity (4.20)
8: Compute [ηL+2] and [τ ] for (L, 1) Padé approximant using (4.19) and (4.21)

9: ∆t← min
([√

1+2h(a)−1
βω [ω][ηL+2]

]1/(L+2)
, 1− t, βτ [τ ]

)
10: Use (L, 1) Padé approximant to obtain initial guess x̂ at t+ ∆t
11: Update scaling factors D using x̂ and (4.17)
12: (success, x̄, [µ], [ω],Θk)← Newton(x̂, a, [µ], [ω], ū, D)
13: if success then
14: t← t+ ∆t
15: x← x̄
16: else

17: ∆t← ∆t
( √

1+2h(0.5a)−1√
1+2h

(
Θ2−k

k

)
−1

)1/(L+2)

18: if ∆t < ∆tmin then
19: return false
20: end if
21: go to Line 10
22: end if
23: if ū = u and [ω][µ] > a5h(a) then . Use extended precision, see (4.14)
24: ū← u2

25: else if ū = u2 then
26: Compute estimate µu of µ(x, u, u) as described in Subsection 4.1.2
27: if [ω]µu < a7h(a) then
28: ū← u
29: end if
30: end if
31: end while
32: return x
33: end procedure

4.4 Computational Experiments
In this section, numerical experiments are shown to illustrate the effectiveness of the pro-
posed path tracking algorithm. Additionally, the algorithm is compared against the adaptive
precision path tracking algorithm [BHSW08] as it is implemented in the state of the art
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package Bertini [BHSW]. For the different solvers, the following notations are used in the
experiments:

HC.jl HomotopyContinuation.jl v2.1
Bertini DP Bertini v1.6 using double precision arithmetic (MPTYPE = 0)
Bertini AP Bertini v1.6 using adaptive precision (MPTYPE = 2)

All solvers are used intentionally with the default settings, unless otherwise mentioned, since
for a non-expert user it is very hard to understand which parameters need to be changed.
Bertini uses by default a path tracking tolerance of 10−5 before and 10−6 during the
endgame. The experiments are performed on a 24 GB RAM machine with an Intel Core
i5-7500 CPU working at 3.40 GHz. All solvers use only one core for the experiments. The
experiments are designed such that the tracked solution paths are all smooth. Therefore,
endgame algorithms are not necessary. In all experiments, the implementation of the pro-
posed algorithm uses a (2, 1) Padé approximant with parameters a = 0.2, βω = 10 and
βτ = 0.75.

4.4.1 Mixtures of Gaussians and the Method of Moments

This example illustrates the behavior of the path tracking algorithm with respect to the two
computed quantities [t∗] and βτ [τ ] that restrict the step size [tmax] in (4.24). Consider two
univariate Gaussian random variables X1 and X2 with means µ1, µ2 and variances σ2

1, σ
2
2.

A mixture of the two random variables X1 and X2 is the random variable where for a given
value λ ∈ [0, 1] a value is drawn from X1 with probability λ and with probability 1− λ from
X2. Only given observations of the mixture of the two random variables, the parameters
µ1, µ2, σ

2
1, σ

2
2 and λ can be recovered by using the method of moments. See [AFS16] for

a detailed algebraic treatment of this problem. As shown in [AFS16], for a mixture of two
univariate Gaussians, the method of moments results in a polynomial system consisting of
five polynomials of degree two to six in five variables and with five sample moments as
parameters. For generic sample moments, this system has 18 isolated solutions. Starting
from generic sample moments, the 18 solutions were tracked to 50 different real sample
moments drawn elementwise independently from a normal distribution. For this, a path
needed on average 14.55 steps (including rejected steps) and on average only 0.18 steps got
rejected. These results shows that the step size control effectively avoids taking too large
steps. In 62.25% of the steps, the step size was more restricted by the curvature condition [t∗]
than the distance to the closest singularity βτ [τ ]. This shows that both conditions, [t∗] and
βτ [τ ], have also in practice an effect on the chosen step size.

4.4.2 Alt’s problem

Alt’s problem, formulated in 1923, is to count the number of four-bar linkages whose coupler
curve interpolates nine general points in the plane. In 1992, Morgan, Sommese, and Wampler
[WMS92] provided a numerical proof to Alt’s problem that there are generically 1442 non-
degenerate four-bar linkages. Due to Roberts cognates and a two-fold symmetry, the resulting
polynomial system generically has 8652 regular solutions. Here, the formulation of the
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polynomial system as an affine polynomial system in 24 variables and the 16 parameters
(δ, δ̂) ∈ C8×C8 is considered. Since the problem is formulated in isotropic coordinates, the
physically meaningful configurations correspond to choices of parameters such that δ and δ̂
are complex conjugates. Consider the ‘general’ situation where solutions are tracked from
generic parameter values δ1 ∈ C8 × C8 to generic physically meaningful parameter values
(δ0, δ̄0) with δ0 ∈ C8. The results in Table 4.1 show that even this general situation results
in numerically challenging paths that Bertini AP cannot handle with its default settings.
After decreasing the path tracking tolerance to 10−8, all solutions are found in half of the
cases. The proposed algorithm, on the other hand, reliably computes all 1442 solutions
without any path jumping in a fraction of the time.

runtime (seconds) # solutions

tol mean median min max median min max

HC.jl - 6.38 6.41 5.08 7.12 1442 1442 1442
Bertini AP 1e-5 1931.63 1832.59 1120.43 2695.13 1436 1433 1441
Bertini AP 1e-8 10950.09 11218.97 8371.76 12115.66 1441 1437 1442

Table 4.1: Results for 10 runs of Alt’s problem using the same generic start solutions to a generic physically
meaningful configuration. The tol column refers to the assigned path tracking tolerance. Missing solutions
are a result of path tracking failures.

Figure 4.2: Behavior of the path tracking algorithm along a single challenging path.

Figure 4.2 illustrates the behavior of the proposed algorithm for one particular numerically
challenging path. This path closely passes at around t = 0.93 a singularity. As expected, this
increases the Lipschitz constant ω and the limit accuracy µ. The limit accuracy decreases
sharply as soon as the algorithm switches to extended precision. After passing the problematic
region, the algorithm quickly switches back to only using double-precision arithmetic, as
indicated by a sharp increase of µ. The lower part of Figure 4.2 depicts different values
associated with the Jacobian J = Hx(x(t), t) along the path: the condition number κ(J),
the componentwise relative condition number cond(J) and cond(J, x). See [Hig02, Sec. 7]
for the relevant definitions. The values of κ(J) and cond(J) obtain a maximum of 2.1×1025
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resp. 1.6× 1019. From these values, it seems hopeless to track the path in double-precision
arithmetic due to the well-known rule of thumb that one expects to lose around log10(κ(J))
digits of accuracy in the linear system solving. However, the componentwise relative forward
error of the computed Newton updates is only governed by the much tamer cond(J, x),
which is at most 5.8 × 1010. This explains why it is still possible to track the path by
only using mixed-precision iterative refinement. Using the proposed path tracking algorithm,
the path needs 253 steps in total with only two rejected steps and a total runtime of 13
milliseconds. Trying to compute the path with Bertini AP results in a path failure after
around 90 seconds and over 5000 steps due to insufficient precision of at most 1024 bits.
After changing the required tracking tolerance to 10−12, Bertini AP successfully tracks the
path in 120 seconds.

4.4.3 Steiner’s Conic Problem

In Chapter 2, we considered Steiner’s conic problem. Here, formulation (2.11) of Steiner’s
conic problem is used where the polynomial system consists of 10 quadratic and 5 cubic
polynomials and has 15 variables and 30 parameters. To test the path tracking algorithm,
we consider the case of a parameter homotopy from generic complex parameters c ∈ C30 to
generic real parameters r ∈ R30.

runtime (seconds) # solutions

tol mean median min max median min max

HC.jl 2.47 2.49 1.64 3.11 3264 3264 3264
Bertini DP 1e-5 34.42 34.57 23.85 45.34 3189 3094 3216
Bertini AP 1e-5 130.53 126.61 78.70 251.01 3261 3256 3264
Bertini AP 1e-8 688.50 691.59 368.36 1125.72 3264 3261 3264

Table 4.3: Results for 50 runs of Steiner’s problem from generic complex parameter values to generic real
parameter values. The tol column refers to the assigned path tracking tolerance. Missing solutions are a
result of path tracking failures.

The results for 50 parameter homotopies are shown in Table 4.3. As for Alt’s problem, the
proposed path tracking algorithm handles all instances without any failure or path jumping.
However, even these generic instances pose problems for other path tracking algorithms
with Bertini AP losing almost always solutions using the default settings. After the path
tracking tolerance is decreased to 10−8 in most instances all solutions are found.

4.5 Conclusion
In this chapter, we developed a new predictor-corrector algorithm for numerical path tracking
in the context of polynomial homotopy continuation. For the corrector step, we designed a
new Newton corrector algorithm based on the Newton-Kantorovich theorem that rejects an
initial guess if it is not an approximate zero. As the result of the Newton corrector algorithm,
we also obtain a local estimate of a Lipschitz-constant that governs the convergence radius
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and speed of Newton’s method. By using Padé approximants as a predictor, we get a method
to estimate locally the distance to the closest singularity. We combined these estimates to
design an adaptive step size control. To handle numerically challenging situations, we devel-
oped criteria to use extended precision for the evaluation of the homotopy. We demonstrated
the efficiency and robustness of the developed mixed-precision algorithm in several numerical
examples.
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5 Certifying Zeros of Polynomial Systems
using Interval Arithmetic

This chapter is based on the article “Certifying Zeros of Polynomial Systems using Interval
Arithmetic” [BRT20] by Paul Breiding, Kemal Rose, and Sascha Timme. The article is
currently under review. A preprint is available at https://arxiv.org/abs/2011.05000.

In Chapter 3, we discussed methods for the numerical solution of polynomial systems.
Hauenstein and Sottile remark in [HS12] that while software packages implementing these
methods “routinely and reliably solve systems of polynomial equations with dozens of vari-
ables having thousands of solutions” they have the shortcoming that “the output is not certi-
fied” and that “this restricts their use in some applications, including those in pure mathemat-
ics”. To remedy this, Hauenstein and Sottile developed the software alphaCertified [HS12].
It can rigorously certify whether a given numerical approximation converges quadratically
to a true zero by using Smale’s α-theory [Sma86] which we introduced in Section 3.6.
Hauenstein and Sottile’s contribution to numerical algebraic geometry was a milestone. Yet,
alphaCertified produces rigorous certificates using expensive rational arithmetic. This
turns the big advantage of numerical computations, namely that they are fast, upside-down,
and makes certification of large problems prohibitively expensive.

Up to this point, the majority of researchers in nonlinear algebra were kept from using
numerical methods, because certification was too expensive and because without certification
numerical methods can’t be used for proofs. With this chapter we want to initiate a paradigm
shift in numerical nonlinear algebra: with a fast implementation, certification becomes the
default and is not just an option. This enables the extensive use of numerical methods for
rigorous proofs.

Contribution

Our contribution to the field of computational algebraic geometry and numerical nonlinear
algebra is an extremely fast and easy-to-use implementation of a certification method. This
implementation outperforms alphaCertified by several orders of magnitude. It makes
the certification of solutions often a matter of seconds and not hours or days. This leap
in performance is the basis for the proposed paradigm shift in numerical nonlinear algebra
where certification is the default and not an option.

Starting from version 2.1 HomotopyContinuation.jl has a function certify1. The
function certify takes as input a square polynomial system F and a numerical approxima-

1The technical documentation is available at
www.juliahomotopycontinuation.org/HomotopyContinuation.jl/stable/certification
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tion of a complex zero x ∈ Cn (or a list of zeros). If the output says “certified”, then this is a
rigorous proof that a solution of F = 0 is near x. If the output says “not certified”, then this
does not necessarily mean that there is no zero near x, just that the method couldn’t find one.
An example of certify is shown in Figure 2.4 in the Chapter on Steiner’s conic problem.
See also the example [BRT] on https://www.juliahomotopycontinuation.org.

We combine interval arithmetic and Krawczyk’s method with numerical algebraic geom-
etry to rigorously certify solutions to square systems of polynomial equations. In technical
terms, our implementation returns strong interval approximate zeros. We introduce this no-
tion in Definition 5.8 below. The strong interval approximate zero consists of a box in Cn
that contains a unique true zero of the polynomial system. If the input is a list of zeros,
then the routine returns a list of distinct strong interval approximate zeros.

Therefore, our method can be used to prove hard lower bounds on the number of zeros of
a polynomial system. Combined with theoretical upper bounds this can constitute rigorous
mathematical proofs on the number of zeros of such systems.

Also, if the given polynomial system is real, we give a certificate of whether the certified
zero is a real zero. The returned boxes may also be used to verify if a real zero is positive
real. Therefore, our method can also be used to prove lower bounds on the number of real
and positive real zeros of a polynomial system.

It is also possible to give a square system of rational functions as input to our implementa-
tion. Although this chapter is formulated in terms of polynomial systems, Krawczyk’s method
also applies to square systems of rational functions. Consequently, all statements about us-
ing our implementation for proofs are equally valid of square systems of rational functions.
Nevertheless, we think that the focus on polynomial systems simplifies the exposition.

Comparison to previous works

There are other implementations of certification methods using Krawczyk’s method and inter-
val arithmetic, e.g., the commercial MATLAB package INTLAB [Rum99], the Macaulay2 pack-
age NumericalCertification [Lee19] and the Julia package IntervalRootFinding.jl
[BS].

Compared to INTLAB the source code of our implementation is freely available and can
be verified by anyone. Additionally, INTLAB doesn’t support the use of arbitrary preci-
sion interval arithmetic. This limits its capability to certify poorly conditioned solutions.
NumericalCertification, as of version 1.0, takes as input not the numerical approxima-
tion of a complex zero x ∈ Cn but instead a box I in Cn. Then, NumericalCertification
attempts to certify that interval I is a strong interval approximate. The process of going
from a numerical approximation x to a good candidate interval I needs particular care as
illustrated in Section 5.4. Intlab and NumericalCertification also both require manual
work to obtain a list of all distinct distinct strong interval approximate zeros. The package
IntervalRootFinding.jl can find all zeros of a multivariate function inside a given box in
Rn, whereas our implementation works in Cn and additionally certifies reality of zeros; see
Section 5.3.

Our contribution is a significant advancement over these previous works since it not only
provides an implementation of Krawczyk’s method but also combines it with the necessary
tools and techniques to deliver an easy to use and robust certification routine.
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We want to note that there are also many other approaches to certifying the existence
of solutions in a region, e.g., based on quantifier elimination by partial cylindrical algebraic
decomposition as implemented in QEPCAD B [Bro03]. However, to keep this presentation
concise we focus in the following only on interval arithmetic.

Outline

The rest of this chapter is organized as follows: In the next section, we demonstrate our
implementation on three applications. This shows both the speed of the implementation and
how it can be used for proofs. We discuss the details of our implementation in Section 5.4.
For completeness, we include a short introduction to interval arithmetic in Section 5.2 and
a proof of Krawczyk’s method in Section 5.3.

5.1 Applications
Certification methods are useful when one wants to prove statements on the number of zeros,
the number of real zeros, or the number of positive real zeros of a polynomial system. When
determining these numbers it is often most challenging to obtain lower bounds. Methods
from algebraic geometry provide upper bounds and applying our certification method can
give a proof that the upper bound for the number of zeros is attained. A computation with
our certification method always reveals lower bounds.

In the following, we discuss the application of our implementation in three different fields.
All reported timings were obtained on an desktop computer with a 3.4 GHz processor running
Julia 1.5.2 [BEKS17] and HomotopyContinuation.jl version 2.2.2.

3264 real conics

In Chapter 2, we discussed Steiner’s conic problem. There we used our certification routine
to prove that the instance proposed in Proposition 2.1 is fully real. The results in Chapter 2
were first reported in [BST20] where we used the software alphaCertified to carry out
the certification. The certification with alphaCertified took us more than 36 hours. In
contrast, our implementation certifies the reality and distinctness of the 3264 conics in less
than three seconds. The output of the certification procedure is shown in Figure 2.4.

Numerical Synthesis of Six-Bar Linkages

Now we demonstrate that the certification routine can cope with large problems. With our
computation, we improve a result from the literature.

We consider the kinematic synthesis of six-bar linkages that use eight prescribed accuracy
points as described in [PM14]. In this article, the authors derive the synthesis equations
for six-bar linkages of the Watt II, Stephenson II, and Stephenson III type. Additionally,
in [PM14, Eq. (35)] they construct a system of 22 polynomials in 22 unknowns and 224
parameters that can be used as a start system in a parameter homotopy to solve the synthesis
equations of all three considered six-bar linkage types.
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The number of non-singular zeros of this generalized start system is reported as 92,736.
It was computed using Bertini and a multi-homogeneous start system. To certify the re-
ported count, we solved the generalized start system using the monodromy method [DHJ+18]
implementation in HomotopyContinuation.jl. In our computation, we obtained 92,752
non-singular zeros for a generic choice of the 224 parameters. These are sixteen more than
reported in [PM14]. We certified this count using our certification routine and obtained
92,752 distinct strong interval approximate zeros. Therefore, we have a certificate that the
generalized system has in general (at least) 92,752 non-singular solution. This establishes
that the result in [PM14] undercounts the true number of solutions. The certification needed
only 38.34 seconds which underlines the scalability of the certification routine.

In Section 5.4, below we discuss that part of the certification process is checking if the
intervals are pairwise disjoint. In this example, there are over 4 billion such pairs. This
underlines the need for having an efficient algorithm for comparing pairs.

Stress response of Bacillus Subtilis

In this section, we demonstrate that our implementation certifies the positivity of zeros. In
many applications, variables represent magnitudes so that only positive real solutions are
physically meaningful. If such zeros exist, our method provides a rigorous proof for their
existence. It also gives a certified interval that contains the true zero. This is of interest
to researchers working at the intersection of algebraic geometry and (bio-)chemical reaction
networks.

Our example is from biochemistry. The environmental and energy stress response of the
bacterium Bacillus subtilis are modeled in [NTI16]. The protein σB is the focus of this paper.
It is responsible for activating a stress-response of the bacterium. σB belongs to the family
of σ factors. These are a type of transcription factors; proteins that govern the expression
of genes.

In [NTI16], regulatory networks are studied. They consist of other proteins involved in
feedback loops that influence the σ-factors. Since there can be many possible reactants
involved in many reactions, the resulting system of differential equations might be very
complicated. The model for Bacillus subtilis in [NTI16] is claimed to be backed up by
experimental data. The activity of σB is regulated by a network consisting of an anti-σ
factor RsbW and an anti-σ factor RsbV.

In [NTI16], this biochemical reactions dynamical system is modelled by a system of dif-
ferential equations in the 10 variables w, w2, w2v, v, w2v2, vP , σB, w2σB, vPp and phos.
These represent the total amounts of σB, RsbW, σ factor RsbV, and of various protein com-
plexes formed by these components. The variable phos measures the concentration of the
phosphatase which serves as a measure for the amount of stress the bacterium experiences.

With our implementation, we can determine the steady states of the described dynamical
system. The vanishing of the differentials of each of the concentrations with respect to time
is equivalent to the vanishing of the ten polynomials below.
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(−kDegw − 2kbw
w2

2 + 2kdww2)(K + σB) + λW v0(1 + FσB) = 0

−kDegw2 + kbw
w2

2 − kdww2 − kB1w2v + kD1w2v + kK1w2v − kB3w2σB + kD3w2σB = 0
−kDegw2v + kB1w2v − kD1w2v − kB2w2vv + kD2w2v2 − kK1w2v + kK2w2v2 + kB4w2σBv − kD4w2vσB = 0

(−kDegv − kB1w2v + kD1w2v − kB2w2vv + kD2w2v2 − kB4w2σBv + kD4w2vσB + kPvPp)(K + σB)
+λV v0(1 + FσB) = 0

−kDegw2v2 + kB2w2vv − kD2w2v2 − kK2w2v2 = 0
−kDegvP + kK1w2v + kK2w2v2 − kB5vPphos + kD5vPp = 0

(−kDegσB − kB3w2σB + kD3w2σB + kB4w2σBv − kD4w2vσB)(K + σB) + v0(1 + FσB) = 0
−kDegw2σB + kB3w2σB − kD3w2σB − kB4w2σBv + kD4w2vσB = 0

−kDegvPp + kB5vPphos− kD5vPp − kPvPp = 0
phos + vPp − ptot = 0

The 23 parameters kbw, kdw, kD, kB1, kB2, kB3, kB4, kB5, kD1, kD2, kD3, kD4, kD5, kK1,
kK2, kP, kDeg, v0, F , K, λW , λV , ptot describe the speed of different reactions. The
following parameter values are derived from experimental data.

kBw = 3600; kDw = 18; kD = 18kB1 = 3600; kB2 = 3600; kB3 = 3600; kB4 = 1800; kB5 = 3600;
kD1 = 18; kD2 = 18; kD3 = 18; kD4 = 1800; kD5 = 18; kK1 = 36; kK2 = 36; kP = 180; kDeg = 0.7;
v0 = 0.4;F = 30;K = 0.2;λW = 4;λV = 4.5; ptot = 2;

As discussed above, only real positive zeros are physically meaningful. Using our implemen-
tation, we can certify that there are 12 real zeros for this system and that among them there
is a unique positive one. It has the following values:

phos = 0.00406661084± 5.25 · 10−12, v = 0.0557971948± 4.87 · 10−12

vP = 27.0899869± 3.85 · 10−8, vPp = 1.99593338916± 5.20 · 10−12

w = 0.10633375735± 8.47 · 10−12, w2 = 0.303554095± 5.47 · 10−10

w2v = 2.25701026± 2.08 · 10−9, w2v2 = 8.288216246± 9.27 · 10−10

w2σB = 10.42034597± 7.94 · 10−9, σB = 0.240800757± 5.17 · 10−10

This is a proof that the dynamical system has a physically meaningful steady state. The inter-
vals above provably contain this steady state. The certification took 0.012 seconds. Hence,
our implementation makes it possible to certify solutions for large numbers of parameters in
a short time.

The code for this example is available at [BRT]. We thank Torkel Loman from the Sains-
bury Laboratory at the University of Cambridge for pointing out this example to us.

5.2 Interval Arithmetic
Since the 1950s researchers [Moo66, Sun58] have worked on interval arithmetic. Interval
arithmetic allows certified computations while still using floating-point arithmetic. We briefly
introduce the concepts from interval arithmetic that are relevant for our certification proce-
dure.
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Real Interval Arithmetic

Real interval arithmetic concerns computing with compact real intervals. Following [May17]
we denote the set of all compact real intervals by

IR := {[a, b] | a, b ∈ R, a ≤ b}.

For X,Y ∈ IR and the binary operation ◦ ∈ {+,−, ·, /}, we define

X ◦ Y = {x ◦ y |x ∈ X, y ∈ Y } (5.1)

where we assume 0 /∈ Y in the case of division. The interval arithmetic version of these
binary operations, as well as other standard arithmetic operations, have explicit formulas.
See, e.g., [May17, Sec. 2.6] for more details.

Complex Interval Arithmetic

We define the set of rectangular complex intervals as

IC := {X + iY | X,Y ∈ IR}

where X + iY = {x + iy | x ∈ X, y ∈ Y } and i =
√
−1. Following [May17, Ch. 9] we

define the algebraic operations for I = X + iY, J = W + iZ ∈ IC in terms of operations on
the real intervals from (5.1):

I + J := (X +W ) + i(Y + Z), I · J := (X ·W − Y · Z) + i(X · Z + Y ·W ) (5.2)

I − J := (X −W ) + i(Y − Z), I

J
:= X ·W + Y · Z

W ·W + Z · Z
+ i

Y ·W −X · Z
W ·W + Z · Z

It is necessary to use (5.1) instead of complex arithmetic for the definition of algebraic
operations in IC. The following example from [May17] demonstrates this. Consider the
intervals I = [1, 2] + i[0, 0] and J = [1, 1] + i[1, 1]. Then, {x · y|x ∈ I, y ∈ J} = {t(1 + i) |
1 ≤ t ≤ 2} is not a rectangular complex interval, while I · J = [1, 2] + i[1, 2] is.

The algebraic structure of IC is given by following theorem; see, e.g., [May17, Theorem
9.1.4].

Theorem 5.1. The following holds.
1. (IC,+) is a commutative semigroup with neutral element.

2. (IC,+, ·) has no zero divisors.
Furthermore, if I, J,K,L ∈ IC, then
3. I · (J +K) ⊆ I · J + I ·K, but equality does not hold in general.

4. I ⊆ J,K ⊆ L, then I ◦K ⊆ J ◦ L for ◦ ∈ {+,−, ·, /}.

Working with interval arithmetic is challenging because of the third item from the previous
theorem: distributivity does not hold in IC As a consequence, in IC the evaluation of
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polynomials depends on the exact order of the evaluation steps. Therefore, the evaluation of
polynomial maps F : ICn → IC is only well-defined if F is defined by a straight-line program,
and not just by a list of coefficients. Figure 5.1 demonstrates this issue in an example. See,
e.g., [BCS13, Sec. 4.1] for an introduction to straight-line programs.

x y z

+

·

x z y

· ·

+

Figure 5.1: The picture shows two straight-line programs for evaluating the polynomial f(x, y, z) = (x+ y)z.
Let I = ([−1, 0], [1, 1], [0, 1])T . Then, the program on the left evaluated at I yields f(I) = ([−1, 0] +
[1, 1])[0, 1] = [0, 1], while the program on the right yields f(I) = [−1, 0][0, 1] + [1, 1][0, 1] = [−1, 1].

Arithmetic in ICn is defined in the expected way. If I = (I1, . . . , In), J = (J1, . . . , Jn) ∈ ICn,

I + J = (I1 + J1, . . . , In + Jn).

Scalar multiplication for I ∈ IC and J ∈ ICn is defined as I · J = (I · J1, . . . , I · Jn). The
product of an interval matrix A = (Ai,j) ∈ ICn×n and an interval vector I ∈ ICn is

A · I := I1 ·

A1,1
...

An,1

+ · · ·+ In ·

A1,n
...

An,n

 . (5.3)

Similar to the one-dimensional case (ICn,+) is a commutative semigroup with neutral ele-
ment.

5.3 Certifying Zeros with Interval Arithmetic
In 1969, Krawczyk [Kra69] developed an interval arithmetic version of Newton’s method.
Later in 1977 Moore [Moo77] recognized that Krawczyk’s method can be used to certify the
existence and uniqueness of a solution to a system of nonlinear equations. Interval arithmetic
and interval Newton’s method are a prominent tool in many areas of applied mathematics;
e.g., in chemical engineering [GS05], thermodynamics [GD05] and robotics [KSS15].

The results in this section are stated for square polynomial systems but they hold equally
for square systems of rational functions. Krawczyk’s method is even valid for general square
systems of analytic functions. Nevertheless, all statements here are only formulated for
polynomial systems. We think that this simplifies the exposition.
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Krawczyk’s method

In this section, we recall Krawczyk’s method for zeros of polynomial systems. First, we need
three definitions.

Definition 5.2 (Interval enclosure). Let F : Cn → Cn be a system of polynomials. A map
�F : ICn → ICn is an interval enclosure of the system F if for every I ∈ ICn we have
{F (x) | x ∈ I} ⊆ �F (I).

In the rest of this chapter, we use the notation �F to denote the interval enclosure
of F . Also, we do not distinguish between a point x ∈ Cn and the complex interval
[Re(x),Re(x)] + i[Im(x), Im(x)] defined by x. We simply use the symbol “x” for both
terms so that �F (x) is well-defined.

Definition 5.3 (Interval matrix norm). Let A ∈ ICn×n. We define the operator norm of A
as ‖A‖∞ := max

B∈A
max
v∈Cn

‖Bv‖∞
‖v‖∞ , where ‖(v1, . . . , vn)‖∞ = max1≤i≤n |vi| is the infinity norm

in Cn.

Next, we introduce an interval version of the Newton operator, the Krawczyk operator [Kra69].

Definition 5.4. Let F : Cn → Cn be a system of polynomials, and JF be its Jacobian
matrix seen as a function Cn → Cn×n. Let �F be an interval enclosure of F and �JF be
an interval enclosure of JF . Furthermore, let I ∈ ICn and x ∈ Cn and let Y ∈ Cn×n be an
invertible matrix. We define the Krawczyk operator

Kx,Y (I) := x− Y ·�F (x) + (1n − Y ·�JF (I))(I − x).

Here, 1n is the n× n-identity matrix.

Remark 5.5. In the literature, Kx,Y (I) is often defined using F (x) and not �F (x). Here,
we use this definition, because in practice it is usually not feasible to evaluate F (x) exactly.
Instead, F (x) is replaced by an interval enclosure.
Remark 5.6. The second part of Theorem 5.7 motivates to find a matrix Y ∈ Cn×n such
that ||1n − Y · �JF (I)||∞ is minimized. A good choice is an approximation of the inverse
of JF (x).

We are now ready to state the theorem behind Krawczyk’s method. The first proof for
real interval arithmetic is due to Moore [Moo77]. One of the few sources that states the
theorem in the complex setting is [BLL19]. For completeness, we recall their proof in this
section. Note that all the data in the theorem can be computed using interval arithmetic.

Theorem 5.7. Let F : Cn → Cn be a system of polynomials and I ∈ ICn. Let x ∈ I and
Y ∈ Cn×n be an invertible complex n× n matrix. The following holds.
1. If Kx,Y (I) ⊂ I, there is a zero of F in I.

2. If additionally
√

2 ‖1n − Y�JF (I)‖∞ < 1, then F has exactly one zero in I.
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To simplify our language when talking about intervals I ∈ ICn satisfying Theorem 5.7,
we introduce the following definitions.

Definition 5.8. Let F : Cn → Cn be a square system of polynomials and I ∈ ICn. Let
Kx,Y (I) be the associated Krawczyk operator (see Definition 5.4). If there exists an invertible
matrix Y ∈ Cn×n such that Kx,Y (I) ⊂ I, we say that I is an interval approximate zero F .
We call I a strong interval approximate zero of F if in addition

√
2‖1n−Y�JF (I)‖∞ < 1 .

Definition 5.9. If I is an interval approximate zero, then, by Theorem 5.7, I contains a
zero of F . We call such a zero an associated zero of I. If I is a strong interval approximate
zero, then there is a unique associated zero and we refer to is as the associated zero of I.

The notion of strong interval approximate zero is stronger than the definition suggests
at first sight. We do not only certify that a unique zero of F exists inside I but we even
certify that we can approximate this zero with arbitrary precision. This is shown in the next
proposition. We prove the proposition at the end of this section.

Proposition 5.10. Let I be a strong interval approximate zero of F and let x∗ ∈ I be the
unique zero of F inside I. Let x ∈ I be any point in I. We define x0 := x and for all
i ≥ 1 we define the iterates xi := xi−1 − Y F (xi−1), where Y ∈ Cn×n is the matrix from
Definition 5.8. Then, the sequence (xi)i≥0 converges to x∗.

The idea for the proof of both Theorem 5.7 and Proposition 5.10 is to verify that for
strong interval approximate zeros I the map GY (x) = x − Y · F (x) defines a contraction
on I. If this is true, by Banach’s Fixed Point Theorem there is exactly one fixed-point of
this map in I. Since Y is invertible, this implies that there is exactly one zero to F (x) in I.

Before we give the proof of Theorem 5.7, we need a lemma. It is a direct sequence
of a complex version of the mean-value theorem which is shown implicitly in the proof of
[BLL19, Lemma 2].

Lemma 5.11. Fix a matrix Y ∈ Cn×n and define GY (x) = x− Y F (x). Let I ∈ ICn be an
interval vector and x, z ∈ I. Then, we have
1. GY (z)−GY (x) ∈ (1n − Y ·�JF (I)) Re(z − x) + (1n − Y ·�JF (I)) iIm(z − x).

2. GY (I) ⊂ Kx,Y (I).

The following proof is adapted from [BLL19, Lemma 2].

Proof of Lemma 5.11. In the proof, we abbreviate G := GY . We first show the second part
assuming the first part of the lemma. Then, we prove the first part. We fix an interval
I ∈ ICn and x, z ∈ Cn.

For the second part, we have to show that for all I ∈ ICn we have G(I) ⊂ Kx,Y (I). To
show this, we define the interval matrix M := (1n − Y�JF (I)) ∈ ICn×n. By definition of
Kx,Y we have G(x) + M(I − x) ⊂ Kx,Y (I). Thus, we have to show that G(z) − G(x) ∈
M(I − x), since z ∈ I is arbitrary. The first part of the lemma implies that we can find
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matricesM1,M2 ∈M such that G(z)−G(x) = M1Re(z−x)+iM2Im(z−x). Decomposing
the matrices into real and imaginary part we find

G(z)−G(x) =Re(M1)Re(z − x)− Im(M2)Im(z − x)+
i(Im(M1)Re(z − x) + Re(M2)Im(z − x)).

Since z − x ∈ I and by definition of the complex interval multiplication from (5.2) and
the interval matrix-vector-multiplication (5.3), we see that G(z)−G(x) ∈M(I − x). This
finishes the proof for the second part.

The first part of the lemma may be shown entry-wise. We will show this by combining
a complex version of the mean value theorem with the following observation: JG(x) =
1n − Y · JF (x), so we have the inclusion

JG(I) = 1n − Y · JF (I) ⊆ 1n − Y ·�JF (I). (5.4)

We relate G(z) − G(x) to (5.4) using the mean value theorem. First, we define w :=
Re(z)+iIm(x). Let 1 ≤ j ≤ n and let Gj denote the j-th entry of G. We define the function
h(t) := Gj(tz+(1−t)w). The real and imaginary part of h(t) are real differentiable functions
of the real variable t. The mean value theorem can be applied, and we find 0 < t1, t2 < 1
such that Re(h(1)) − Re(h(0)) = d

dtRe(h(t1)) and Im(h(1)) − Im(h(0)) = d
dt Im(h(t2)).

Setting c1 = t1z + (1− t1)w and c2 = t2z + (1− t2)w this implies

Gj(w)−Gj(z) = (∇ReRe(Gj(c1)))T (z − w) + i∇ReIm(G(c2)))T (z − w),

where ∇ReG denotes the vector of partial derivatives with respect to the real variable. Let
us denote by G′j the complex derivative of Gj ; that is, G′j : Cn → Cn as a function. From
the Cauchy Riemann equations it follows that ∇ReRe(Gj(c1)) = Re(G′j(c1)) and likewise
∇ReIm(G(c2)) = Im(G′(c2)). This yieldsGj(z)−Gj(w) = (Re(G′j(c1)+iIm(G′j(c2)))T (z−
w). Putting these equations ranging over j together we find G(z)−G(w) = (Re(JG(c1)) +
iIm(JG(c2)))(z − w). By construction, c1 and c2 are contained in I, because w and z are
contained in I, and I is a product of rectangles and thus convex. Combined with (5.4) this
yields

G(z)−G(w) ∈ (1n − Y ·�JF (I))(z − w).

Using essentially the same arguments for the path from x to w, we also find

G(w)−G(x) ∈ (1n − Y ·�JF (I))(w − x).

By construction, z − w = iIm(z − x) and w − x = Re(z − x). This implies

G(z)−G(x) ∈ (1n − Y ·�JF (I)) Re(z − x) + (1n − Y ·�JF (I)) iIm(z − x).

This finishes the proof.

Proof of Theorem 5.7 and Proposition 5.10. We fix Y ∈ Cn×n. The second part of Lemma
5.11 implies that, if we have Kx,Y (I) ⊆ I, then GY (I) ⊆ I. Brouwer’s fixed point Theorem
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shows that GY has a fixed point in I. Since Y is assumed to be invertible, the fixed point is
a zero of F . This finishes the proof for the first part of Theorem 5.7. For the second part,
let z1, z2 ∈ I. The first part of Lemma 5.11 implies

GY (z1)−GY (z2) ∈ (1n − Y ·�JF (I))Re(z1 − z2) + (1n − Y ·�JF (I)) iIm(z1 − z2).

(Note that we can’t apply the distributivity law because of Theorem 5.1 3.). Applying norms
and using submultiplicativity yields

‖GY (z1)−GY (z2)‖∞ ≤ ‖(1n − Y ·�JF (I))‖∞ (‖Re(z1 − z2)‖∞ + ‖Im(z1 − z2)‖∞).

Since ‖Re(z1 − z2)‖∞ + ‖Im(z1 − z2)‖∞ ≤
√

2‖z1 − z2‖∞, it holds

‖GY (z1)−GY (z2)‖∞ ≤
√

2‖1n − Y ·�JF (I)‖∞‖z1 − z2‖∞.

By assumption
√

2‖1n − Y ·�JF (I)‖∞ is smaller than 1 so GY is a contraction. Banach’s
Fixed Point Theorem implies that GY has a unique zero in I. This shows the second part
of Theorem 5.7. The fact that GY is a contraction on I also proves Proposition 5.10.

Certifying Reality

For many applications, only the real zeros of a polynomial system are of interest. Since
numerical homotopy continuation computes in Cn, it is important to have a rigorous method
to determine whether a zero is real.

Recall from Definition 5.8 the notion of strong interval approximate zero.

Lemma 5.12. Let F : Cn → Cn be a real square system of polynomials and I ∈ ICn a
strong interval approximate zero of F . Then there exists x ∈ I and Y ∈ Cn×n satisfying
Kx,Y (I) ⊂ I and

√
2 ‖1n − Y�JF (I)‖∞ < 1. If additionally {z̄ | z ∈ Kx,Y (I)} ⊂ I, the

associated zero of I is real.

Proof. Theorem 5.7 implies that F has a unique zero s ∈ Kx,Y (I) ⊂ I. Since F is a real
polynomial system, it follows that also the element-wise complex conjugate s̄ is a zero of F .
If we have that s̄ ∈ {z̄ | z ∈ Kx,Y (I)} ⊂ I, then s̄ = s, since otherwise s̄ and s would be
two distinct zeros of F in I, contradicting the uniqueness result from Theorem 5.7.

For a wide range of applications, positive real zeros are of particular interest.

Corollary 5.13. Let F : Cn → Cn be a real square system of polynomials and I ∈ ICn a
strong interval approximate zero of F satisfying the conditions of Lemma 5.12. If Re(I) > 0,
then the associated zero of I is real and positive.

If the reality test in Lemma 5.12 fails for a strong interval approximate zero I ∈ Cn, then
this does not necessarily mean that the associated zero of I is not real. A sufficient condition
that I is not real is that there is a coordinate such that the imaginary part of it does not
contain zero.
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Lemma 5.14. Let F (x) be a square system of polynomials or rational functions and let
I ∈ ICn be a strong interval approximate zero of F . If there exists k ∈ {1, . . . , n} such that
0 /∈ Im(Ik), then the associated zero of I is not real.

Proof. The associated zero x of I is contained in I. Since 0 /∈ Im(Ik), it follows xk /∈ R
and x /∈ Rn.

Now assume that the certification routine produced a list I of m distinct strong interval
approximate zeros for a given system F and that m also agrees with the theoretical upper
bound on the number of isolated zeros of F . If we apply Lemma 5.12 to Ik ∈ I, then we
obtain only a lower bound, say r, on the number of real zeros of F . However, combined
with Lemma 5.14, we can also obtain an upper bound of the number of real zeros. If these
two bounds agree, we obtain a certificate that F has exactly r real zeros. An application of
this is, e.g., the study of the distribution of the number of real solutions of the power flow
equations [LZBL20].

5.4 Implementation Details
In this section, we describe the necessary considerations to implement Krawczyk’s method
described in Section 5.3 as well as the technical realization in HomotopyContinuation.jl.
The certification routine takes as input a square polynomial system F : Cn → Cn and a
finite list X ⊂ Cn of (suspected) approximations of isolated zeros of F . It is also possible to
provide a square system of rational functions as input. Similar to Section 5.3, we restrict to
the polynomial case to simplify our exposition. It returns a list of strong interval approximate
zeros I = {I1, . . . , Im} ∈ ICn such that no two intervals Ik and I`, k 6= `, overlap. If
two strong interval approximate zeros don’t overlap, then this implies that their associated
zeros are distinct. Additionally, if F is a real polynomial system then for each Ik ∈ I,
it is determined whether its associated zero is real. The prototypical application of the
certification routine is to take as input approximations of all isolated solutions X ⊂ Cn of
F as computed by numerical homotopy continuation methods.

Interval Enclosures for Polynomial Systems

As already discussed in Section 5.2, the fact that distributivity doesn’t hold in IC requires
that the polynomial system F : Cn → Cn and its interval enclosure �F have to be defined
by a straight-line program, and not just by a list of coefficients. The overestimation of the
interval enclosure �F increases with the size of the straight-line program. Therefore, it
is good to express F and its enclosure �F by the smallest straight-line program possible.
To achieve this, HomotopyContinuation.jl automatically applies a multivariate version of
Horner’s rule to reduce the number of operations necessary to evaluate F and �F . The
representation of straight-line programs in HomotopyContinuation.jl is also discussed in
Section 9.2.1.
Remark 5.15. Our implementation of interval enclosures can also be used to prove that a
polynomial map F : Cn → Cm with real coefficients evaluated at a real point p ∈ Rn is
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positive. To verify this, one takes an interval I ∈ ICn of the form I = J + i[0, 0]×n such
that p ∈ J . If �F is an interval enclosure of F , and if �F (I) ⊂ Rm>0 + i[0, 0]×m, then this
is a proof that F (p) ∈ Rm>0.

Machine Interval Arithmetic

In the next subsection, we give a method to construct a candidate I ∈ ICn for a strong
interval approximate zero. Before, we need to study machine interval arithmetic; the re-
alization of interval arithmetic with finite-precision floating-point arithmetic. We assume
the standard model of floating-point arithmetic [Hig02, Section 2.3] where the result of a
floating-point operation is accurate up to relative unit roundoff u: fl(x ◦ y) = (x ◦ y)(1 + δ),
where |δ| ≤ u and ◦ ∈ {+,−, ∗, /}. For instance, following the IEE-754 standard, the unit
roundoff in double precision arithmetic is u = 2−53 ≈ 2.2 · 10−16. The key property in
the context of interval arithmetic is that each result of a floating-point operation can be
rounded outwards such that the resulting interval contains the true (exact) result; see, e.g.,
[May17, Section 3.2]. Therefore, given X,Y ∈ IC, the result of X ◦ Y , ◦ ∈ {+,−, ∗, /}, is
fl(X ◦ Y ) := {(x ◦ y)(1 + δ) | |δ| ≤ u, x ∈ X, y ∈ Y } in machine arithmetic. This interval
contains X ◦ Y . It is larger. Additionally, for a given x ∈ IC, all intervals of the form
{x + (|Re(xj)| + i|Im(xj)|)δ | |δ| ≤ µ} with 0 < µ ≤ u are indistinguishable when working
with precision u.

As a consequence, it is possible that the Krawczyk operator Kx̃,Y , see Definition 5.4,
is a contraction for the interval I but that machine arithmetic can’t verify this because
fl(X ◦ Y ) is larger than X ◦ Y . In such a case, the unit roundoff u needs to be sufficiently
decreased. For this reason, our implementation uses machine interval arithmetic based on
double-precision arithmetic as well as, if necessary, the arbitrary precision interval arithmetic
implemented in Arb [Joh17].

Determining Strong Interval Approximate Zeros

In a first step, the certification routine attempts to produce for a given x ∈ X a strong interval
approximate zero I ∈ ICn. Recall that for I ∈ ICn to be a strong interval approximate zero,
we need by Theorem 5.7 to have a point x̃ ∈ I and a matrix Y ∈ Cn×n such thatKx̃,Y (I) ⊂ I
and
√

2 ‖1n − Y�JF (I)‖∞ < 1.
Given a point x ∈ X and a unit roundoff u, the point x is refined using Newton’s method

to maximal accuracy. We denote this refined point x̃. Here, we assume that x is already
in the region of quadratic convergence of Newton’s method. Next, the point x̃ needs to
be inflated to an interval I with x̃ ∈ I. This process is called ε-inflation in the literature
[May17, Sec. 4.3]. However, choosing the correct I is a hard problem: if I is too small or
too large, then the Krawczyk operator is not a contraction.

Despite these difficulties, we found the following heuristic to determine I work very well. If
we assume x̃ to be in the region of quadratic convergence of Newton’s method, it follows from
the Newton-Kantorovich theorem that ||JF (x̃)−1F (x̃)||∞ is a good estimate of the distance
between x̃ and the convergence limit x∗. Therefore, we set Y ≈ JF (x̃)−1 (computed in
floating-point arithmetic) and use I = (x̃j ± |(Y · �F (x))j |u−

1
4 )j=1,...,n where the factor
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u−
1
4 accounts for the overestimation by machine interval arithmetic. If I doesn’t satisfy the

conditions in Theorem 5.7, the procedure is repeated with a smaller unit roundoff u. This
repeats until either a minimal unit roundoff is reached or the certification is successful.

Producing Distinct Intervals

Assume now that the steps in Section 5.4 have been performed for all x ∈ X. We obtain a
list of strong interval approximate zeros I1, . . . , Ir ∈ ICn. In a final step, we want to select
a subset M ⊂ {1, . . . , r} such that for all k, j ∈ M , k 6= j, the intervals Ik and Ij do
not overlap. If two strong interval approximate zeros do not overlap, then it is guaranteed
that they have distinct associated zeros. A simple approach to determine M is to compare
all intervals pairwise. However, this approach requires us to perform

(r
2
)
interval vector

comparisons. For larger problems, this becomes prohibitively expensive.
Instead, we employ the following improved scheme to determine all non-overlapping inter-

vals. First, we pick a random point q ∈ Cn and compute in interval arithmetic for each Ik,
k ∈M , the squared Euclidean distance dk ∈ IR between Ik and q. Due to the guarantees of
interval arithmetic, we have that dk and d` overlap if Ik and I` overlap (but the converse is
not necessarily true). Next, we check for all overlapping intervals dk and d`, 1 ≤ k < ` ≤ r,
whether Ik and I` overlap, and if so, we group them accordingly. This allows us to construct
the set M by selecting those intervals that don’t overlap with any other and by picking one
representative of each cluster of overlapping intervals. The worst-case complexity of this
procedure still requires O(r2) operations, but in the common case where no or only a small
number of intervals overlap, O(r log r) operations are sufficient.

5.5 Conclusion
In this chapter, we established interval arithmetic as a practical tool for certification in
numerical nonlinear algebra. We described how Krawczyk’s method allows us to obtain from
a numerical solution a strong interval approximate zero. A strong interval approximate zero
describes an interval box that contains a unique isolated regular solution to a square system of
polynomial equations. The certification of isolated solutions is an important tool in numerical
nonlinear algebra since it allows to use numerical results for mathematical proofs. We saw
already in Chapter 2 an example of this with our fully real instance of Steiner’s conic problem
in Proposition 2.1. We also presented an implementation of the developed certification
routine in form of the function certify in HomotopyContinuation.jl. We demonstrated
that our implementation dramatically outperforms earlier approaches to certification. In the
next chapter, we will see a problem where only this increase in certification performance
made certification practically feasible.
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6 Computing the Degree of the Linear
Orbit of a Cubic Surface

This chapter is based on the article “96120: The degree of the linear orbit of a cubic surface”
[BIMTW20] by Laura Brustenga I Moncusì, Sascha Timme and Madeleine Weinstein. The
article is published in the Le Mathematiche special issue on “Twenty-Seven Questions about
the Cubic Surface“.

This chapter demonstrates an application of numerical nonlinear algebra to a problem in
classic algebraic geometry. We study the action of the projective linear group PGL(C, 4) on
cubic surfaces parameterized by points in P19. Automorphism groups of varieties and group
actions on varieties are of much interest to researchers of algebraic geometry, arithmetic,
and representation theory [AF93,BI17,MM64,Vai03]. In particular, we compute the degree
of the 15-dimensional projective variety in P19 defined by the Zariski closure of the orbit
of a general cubic surface under this action. This degree is also meaningful in enumerative
geometry: It is the number of translates of a cubic surface that pass through 15 points in
general position. This formulation provides an alternate method for obtaining the degree.

Aluffi and Faber considered the analogous problem for plane curves of arbitrary degree.
First, the smooth case in [AF93] and then the general case in [AF00]. They obtained a closed
formula for the degree of the orbit closure of a plane curve under the action of PGL(C, 3).
This was a significant undertaking, involving long and detailed calculations in intersection
rings using advanced techniques from intersection theory.

Instead of adopting the techniques developed by Aluffi and Faber, we use tools from
numerical nonlinear algebra. The general idea is as follows. We fix a cubic surface f and 15
points in general position in P3. The condition that a translate of f passes through these 15
points results in a polynomial system for which we compute all isolated numerical solutions
by homotopy continuation and the monodromy method using HomotopyContinuation.jl.
Using the certification technique developed in Chapter 5, we establish a hard lower bound
on the number of solutions to this system. Finally, we use the trace test described in Section
3.6.2 to check that no solution is missing. With these techniques, we conclude that the
number of numerical solutions we obtain, 96120, is in fact the degree of the orbit closure.
This result is a “numerical theorem” rather than a theorem in the classical sense since we
only have strong numerical evidence.

In the following, we introduce the linear orbit problem in detail and derive the polynomial
systems used in our computations. Afterward, we describe the computations performed to
arrive at the result.
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6.1 Linear Orbits and Polynomial Systems
A cubic surface in P3 is defined by a cubic homogeneous polynomial in 4 variables with
complex coefficients. The parameter space for cubic surfaces is P19 and we fix coordinates
[c0 : · · · : c19] ∈ P19.

The projective space P15 of homogeneous 4× 4 matrices A = (aij)1≤i,j≤4 is a compact-
ification of the projective general linear group

PGL(C, 4) = {A ∈ P15 | det(A) 6= 0} ⊆ P15 .

The group PGL(C, 4) acts on a cubic surface f ∈ P19, with ϕ ∈ PGL(C, 4) sending f to
the cubic surface ϕ · f defined by the equation

f(ϕ(x, y, z, w)) = 0 .

This corresponds to a linear change of the coordinates x, y, z, w. We say that ϕ · f is the
translate of f by ϕ. Then PGL(C, 4) · f is the orbit of f in P19 and its Zariski closure
Ωf := PGL(C, 4) · f is a 15-dimensional projective variety.

Example. To illustrate this idea, we consider the action of PGL(C, 2) on pairs of points
defined by homogeneous polynomials

f(x, y) = b0x
2 + b1xy + b2y

2 .

The parameter space for pairs of points is P2, that is f = (b0 : b1 : b2) ∈ P2. Let

ϕ =
(
a11 a12
a21 a22

)
.

Then

f(ϕ(x, y)) =b1(a11x+ a12y)2 + b2(a11x+ a12y)(a21x+ a22y) + b3(a21x+ a22y)2

=(b1a2
11 + b2a11a21 + b3a

2
21)x2 +

(2b1a11a12 + b2(a11a22 + a12a21) + 2b3a21a22)xy +
(b1a2

12 + b2a12a22 + b3a
2
22)y2.

and thus

ϕ · f = (b1a2
11 + b2a11a21 + b3a

2
21 :

2b1a11a12 + b2(a11a22 + a12a21) + 2b3a21a22 :
b1a

2
12 + b2a12a22 + b3a

2
22) ∈ P2 .

To compute the degree of the orbit closure of a general cubic surface under the action
of PGL(C, 4), we construct as follows polynomial systems whose number of isolated regular
solutions correspond to the desired degree.
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Fix a general cubic surface f ∈ P19 and a general linear subspace L ⊆ P19 of dimension
4, the codimension of Ωf . Consider the rational map

Θf : P15 → P19

sending a 4×4 matrix ϕ to ϕ ·f . By definition, the image of Θf is Ωf . By [MM64, Theorem
5], a generic hypersurface of degree at least three in at least four variables has a trivial
stabilizer (we note that in [BI17, Propostion 7.5] it is stated that argument in [MM64] has an
error but that it does not affect the correctness of the statement). Hence, the map Θf is one-
to-one, so the degrees of the zero-dimensional varieties Ωf ∩L and Θ−1

f (Ωf ∩L) = Θ−1
f (L)

are equal.
Note that Θ−1

f (L) includes non-invertible matrices whose kernel does not contain f .
But since we assume L ⊆ P19 to be general, Θ−1

f (L) will not intersect the codimension 1
subvariety of P15 of matrices with determinant equal to 0. It follows that the degree of the
orbit closure is the number of regular isolated solutions of the polynomial system

L̃ ϕ · f = 0 (6.1)

in the entries of ϕ ∈ P15, where L̃ ∈ C15×20 is a matrix representing the general linear
subspace L ⊆ P19 of dimension 4.

The degree of Ωf can be thought of in enumerative terms as the number of translates of
f that pass through 15 points p1, . . . , p15 ∈ P3 in general position. Consider the translated
cubic surface ϕ ·f . Note that ϕ ·f passes through a point p ∈ P3 if and only if f(ϕ(p)) = 0 .
Therefore we obtain the polynomial system

f(ϕ(pi)) = 0 , i = 1, . . . , 15 (6.2)

in the entries of P15. By Bertini’s theorem, we assume that the hypersurfaces f(ϕ(pi)) = 0
intersect transversally. Hence, the degree of Ωf is equal to the number of matrices satisfying
equation (6.2).

Formulations (6.1) and (6.2) both result in a system of 15 homogeneous cubic polyno-
mials in the 16 unknowns (aij)1≤i,j≤4, but they have different computational advantages.
To perform numerical homotopy continuation, it is beneficial to pass to an affine chart of
projective space. This can be done in formulation (6.1) by fixing a coordinate, say adding
the polynomial a11 − 1 = 0. But this introduces artificial solutions. For example, for every
solution φ ∈ C16, we have that ei 2

3πφ and ei 4
3πφ are also solutions. The formulation (6.2)

does not produce these undesired artificial solutions. Additionally, this formulation is also
faster to evaluate and produces less numerical error. To check whether we found all solutions,
we want to perform a trace test. But for this, the formulation (6.1) is better suited. Since
this formulation corresponds to the intersection of a positive-dimensional variety with a linear
space, we can apply the trace test directly. To perform a trace test with the formulation (6.2)
would require us to first compute additional solutions as explained in Section 3.6.2.
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6.2 A Numerical Approach
In this section, we explain our use of numerical nonlinear algebra to obtain Theorem* 6.1
below. We refrain from stating this result as a theorem since we currently cannot certify the
last step of our computation. We add the asterisk to acknowledge this gap.

Theorem* 6.1. The degree of the orbit closure of a general cubic surface under the action
of PGL(C, 4) is 96120.

All computations performed to arrive at this result are available from the authors upon
request.

To compute the degree of the orbit closure, we sample a general cubic surface f ∈ P19

by drawing the real and imaginary parts of each of its coordinates independently from a
univariate normal distribution. We then solve the polynomial system (6.2) encoding the
enumerative geometry problem. A naive strategy is to sample 15 points p1, . . . , p15 ∈ P3

in general position and use a total degree homotopy, but in this case the Bézout bound is
315 = 14, 348, 907. Here, the monodromy method described in Chapter 3.5 is substantially
more efficient.

To apply the monodromy method, we consider (6.2) as a polynomial system on the entries
of ϕ parameterized by 15 points p1, . . . , p15 in P3. We consider the incidence variety

V = {(ϕ, (p1, . . . , p15)) ∈ P15 × (P3)15 | F (ϕ(pi)) = 0, i = 1, . . . , 15}

and we denote by π the projection P15 × (P3)15 → (P3)15 restricted to V .
We find a start pair (ϕ0; p1, . . . , p15) ∈ V and then we use the monodromy action on

the fiber π−1(p1, . . . , p15) to find all solutions in this fiber. Such a start pair can be found
by exchanging the role of variables and parameters. First, we sample a ϕ0 ∈ P15 and
the first three coordinates of 15 points pi ∈ P3 in general position. This yields a system
of 15 polynomials each depending only on a unique variable: The ith polynomial depends
only on the fourth coordinate of pi. Such a system is easy to solve. Solving it yields a
start pair (ϕ0; p1, . . . , p15) ∈ V , on which we run the monodromy method implemented in
HomotopyContinuation.jl. In less than an hour, this method found 96120 approximate
solutions corresponding to the start points p1, . . . , p15 ∈ P3. Applying the certification
routine implemented in HomotopyContinuation.jl and described in Chapter 5, we certify
in less than 5 minutes that our approximate solutions correspond to 96120 distinct isolated
solutions of the system.
Remark 6.2. The article [BIMTW20] on which this chapter is based performed the certifi-
cation using the software alphaCertified [HS12]. However, we were only able to obtain
a certificate using floating-point arithmetic due to computational limits. This certificate is
not rigorous due to possible floating-point errors. For a rigorous certificate, it would have
been necessary to use rational arithmetic. The computation for the floating-point certificate
needed 5 hours and 80GB of memory. The new certification routine described in Chapter
5 allowed us to close this gap. In contrast to the alphaCertified computation, it only
needed around one minute and substantially less memory.
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The certification process establishes a lower bound on the degree of the orbit closure.
As the last step, we run a trace test to verify that we have indeed found all solutions. For
this, we construct a linear subspace L from the 15 points p1, . . . , p15 such that our solutions
from the monodromy computation are also solutions to (6.1). The result of the trace test
is theoretically zero if we found all solutions. In our numerical computation, we obtained a
value on the order of the machine precision giving us very high confidence that we found
indeed all solutions. We conclude that the degree of the orbit closure of a general cubic
surface under the action PGL(C, 4) is 96120.

We note that as a test of our methods, we confirmed known degrees of other varieties. In
agreement with a theoretical result of Aluffi and Faber [AF93], we computed that the degree
of the orbit closure of a general quartic curve in the plane is 14280. Additionally, we computed
that the degree of the orbit closure of the Cayley cubic, defined by the equation yzw+xzw+
xyw + xyz = 0, is 305. Due to the symmetry of the variables in the Cayley cubic, there
are 4! matrices corresponding to every polynomial in the orbit. As expected, we computed
7320 = 4! · 305 solutions. This coincides with a theoretical result of Vainsencher [Vai03].

6.3 Conclusion
In this chapter, we computed the degree of the orbit closure of the action of the projective
linear group PGL(C, 4) on cubic surfaces parameterized by points in P19 using methods
from numerical nonlinear algebra. Our result is that the degree is 96120. To compute
and verify this degree, we used the monodromy method, a trace test and the certification
of isolated solutions. The monodromy method allowed us to quickly compute the 96120
isolated solutions corresponding to the degree of the orbit closure. The certification of the
computed 96120 isolated solutions established a rigorous lower bound on the degree of the
orbit closure. To strengthen our result, we also employed a trace test to check that we did not
miss any solutions with the monodromy method. Unfortunately, the trace test is not rigorous
as discussed in Section 3.6. This chapter illustrates the importance of finding a rigorous trace
test. Given a rigorous trace test, we could drop the asterisks from Theorem* 6.1.
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7 Estimating Linear Covariance Models

This chapter is based on the article “Estimating linear covariance models with numerical
nonlinear algebra” [STZ20] by Bernd Sturmfels, Sascha Timme and Piotr Zwiernik. The
article appeared in Algebraic Statistics volume 11 number 1.

In this chapter, we demonstrate the application of numerical nonlinear algebra in statistics.
In many statistical applications, the covariance matrix Σ has a special structure. A natural
setting is that one imposes linear constraints on Σ or its inverse Σ−1. We here study
models for Gaussians whose covariance matrix Σ lies in a given linear space. Such linear
Gaussian covariance models were introduced by Anderson [And70]. He was motivated by the
Toeplitz structure of Σ in time series analysis. Recent applications of such models include
repeated time series, longitudinal data, and a range of engineering problems [Pou99]. Other
occurrences are Brownian motion tree models [SUZ20], as well as pairwise independence
models, where some entries of Σ are set to zero.

The literature on estimating a covariance matrix is extremely rich. Its development has
been particularly dynamic in high-dimensional statistics under sparsity assumption on Σ or
its inverse; see [FLL16] for an overview. Although the sample covariance matrix is known to
have poor statistical properties, for many Gaussian models the maximum likelihood estimator
(MLE) remains an important reference point.

Maximum likelihood estimation for linear covariance models is a nonlinear algebraic op-
timization problem over a spectrahedral cone, namely the convex cone of positive definite
matrices Σ that satisfy the linear constraints of interest. The objective function is not convex
and can have multiple local maxima. Yet, if the sample size is large relative to the dimension,
then the problem is essentially convex. This was shown in [ZUR17]. In general, however, the
MLE problem is poorly understood, and there is a need for accurate methods that reliably
identify all local maxima.

Nonlinear algebra furnishes such a method, namely solving the score equations [Sul18, Sec-
tion 7.1] using numerical homotopy continuation [SW05]. This is guaranteed to find all
critical points of the likelihood function and hence all local maxima. A key step is the
knowledge of the maximum likelihood degree (ML degree). This is the number of complex
critical points. The ML degree of a linear covariance model is an invariant of a linear space
of symmetric matrices which is of interest in its own right.

Our presentation is organized as follows. In Section 7.1, we introduce various models to
be studied, ranging from generic linear equations to colored graph models. In Section 7.2, we
discuss the maximum likelihood estimator as well as the dual maximum likelihood estimator.
Starting from [Sul18, Proposition 7.1.10], we derive a convenient form of the score equations.
The natural point of entry for an algebraic geometer is the study of generic linear constraints.
This is our topic in Section 7.3. We compute a range of ML degrees and we compare them
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to the dual degrees in [SU10, Section 2.2].
In Section 7.4, we present our software LinearCovarianceModels.jl. This is written

in Julia and it is easy to use. It computes the ML degree and the dual ML degree for a
given subspace L, and it determines all complex critical points for a given sample covariance
matrix S. Among these, it identifies the real and positive definite solutions, and it then
selects those that are local maxima. The package is available at

https://github.com/saschatimme/LinearCovarianceModels.jl (7.1)

and rests on HomotopyContinuation.jl.
Section 7.5 discusses instances where the likelihood function has multiple local maxima.

This is meant to underscore the strength of our approach. We then turn to models where
the maximum is unique and the MLE is a rational function.

In Section 7.6, we examine Brownian motion tree models. Here the linear constraints are
determined by a rooted phylogenetic tree. We study the ML degree and dual ML degree. We
show that the latter equals one for binary trees, and we derive the explicit rational formula
for their MLE. A census of these degrees is found in Table 7.6.

7.1 Linear Covariance Models
Let Sn be the

(n+1
2
)
-dimensional real vector space of n × n symmetric matrices Σ = (σij).

The subset Sn+ of positive definite matrices is a full-dimensional open convex cone. Consider
any linear subspace L of Sn whose intersection with Sn+ is nonempty. Then, Sn+ ∩ L is a
relatively open convex cone. In optimization, where one uses the closure, this is known as a
spectrahedral cone. In statistics, the intersection Sn+∩L is a linear covariance model. These
are the models we study in this chapter. In what follows, we discuss various families of linear
spaces L that are of interest to us.

Generic linear constraints: Fix a positive integer m ≤
(n+1

2
)
and suppose that L is a

generic linear subspace of Sn. Here “generic” is meant in the sense of algebraic geometry,
i.e. L is a point in the Grassmannian that lies outside a certain algebraic hypersurface. This
hypersurface has measure zero, so a random subspace will be generic with probability one.
For a geometer, it is natural to begin with the generic case, since its complexity controls the
complexity of any special family of linear spaces. In particular, the ML degree for a generic
L depends only on m and n, and this furnishes an upper bound for the ML degree of the
special families below.

Diagonal covariance matrices: Here we take m ≤ n and we assume that L is a linear
space that consists of diagonal matrices. Restricting to covariance matrices that are diagonal
is natural when modeling independent Gaussians. We use the term generic diagonal model
when L is a generic point in the (n − m)m-dimensional Grassmannian of m-dimensional
subspaces inside the diagonal n× n matrices.

Brownian motion tree models: A tree is a connected graph with no cycles. A rooted
tree is obtained by fixing a vertex, called the root, and directing all edges away from the
root. Fix a rooted tree T with n leaves. Every vertex v of T defines a clade, namely the set
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of leaves that are descendants of v. For the Brownian motion tree model on T , the space L
is spanned by the rank-one matrices eAeTA, where eA ∈ {0, 1}n is the indicator vector of A.
Hence, if C is the set of all clades of T then

Σ =
∑
A∈C

θAeAe
T
A, where θA are model parameters. (7.2)

The linear equations for the subspace L are σij = σkl whenever the least common ancestors
lca(i, j) and lca(k, l) agree in the tree T . Assuming θA ≥ 0, the union of the models for
all trees T is characterized by the ultrametric condition σij ≥ min{σik, σjk} ≥ 0. Matrices
of this form play an important role also in hierarchical clustering [HTF09, Section 14.3.12],
phylogenetics [Fel73], and random walks on graphs [DMSM14].

Maximum likelihood estimation for this class of models is generally complicated but re-
cently there has been progress (cf. [THA14,SUZ20]) on exploiting the nice structure of the
matrices Σ above. In Section 7.6, we study computational aspects of the MLE, and, more
importantly, we provide a significant advance by considering the dual MLE.

Covariance graph models: We consider models L that arise from imposing zero re-
strictions on entries of Σ. This was studied in [CDR07,DR02]. This is similar to Gaussian
graphical models where zero restrictions are placed on the inverse Σ−1. We encode the
sparsity structure with a graph whose edges correspond to nonzero off-diagonal entries of
Σ. Zero entries in Σ correspond to pairwise marginal independences. These arise in statis-
tical modeling in the context of causal inference [CW93]. Models with zero restrictions on
the covariance matrix are known as covariance graph models. Maximum likelihood in these
Gaussian models can be carried out using Iterative Conditional Fitting [CDR07,DR02], which
is implemented in the ggm package in R [Mar06].

Toeplitz matrices: SupposeX = (X1, . . . , Xn) follows the autoregressive model of order
1, that is, Xt = ρXt−1+εt, where ρ ∈ R and εt ∼ N(0, σ) for some σ. Assume that the εt are
mutually uncorrelated. Then cov(Xt, Xt−k) = ρk, and hence Σ is a Toeplitz matrix. More
generally, covariance matrices from stationary time series are Toeplitz. Multichannel and
multidimensional processes have covariance matrices of block Toeplitz form [BLW82,MS87a].
Similarly, if X follows the moving average process of order q then cov(Xt, Xt−k) = γk if
k ≤ q and it is zero otherwise; see, for example, [Ham94, Section 3.3]. Thus, in time series
analysis, we encounter matrices like

γ0 γ1 γ2 γ3 γ4
γ1 γ0 γ1 γ2 γ3
γ2 γ1 γ0 γ1 γ2
γ3 γ2 γ1 γ0 γ1
γ4 γ3 γ2 γ1 γ0

 or


γ0 γ1 0 0 0
γ1 γ0 γ1 0 0
0 γ1 γ0 γ1 0
0 0 γ1 γ0 γ1
0 0 0 γ1 γ0

 . (7.3)

We found that the ML degree for such models is surprisingly low. This means that nonlinear
algebra can reliably estimate Toeplitz matrices that are fairly large.

Colored covariance graph models: A generalization of covariance graph models is
obtained by following [HL08], which introduces graphical models with vertex and edge sym-
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metries. Models of this type also generalize the Toeplitz matrices and the Brownian motion
tree models. Following the standard convention we use the same colors for edges or vertices
when the corresponding entries of Σ are equal. The black color is considered neutral and
encodes no restrictions.

1 2

3

4

5

1 2 3 4 5

Figure 7.1: A covariance graph model with edge symmetries and the rooted tree for the corresponding Brownian
motion tree model.

The Brownian motion tree model corresponds to a colored model over the complete graph,
where edge symmetries are encoded by the tree; cf. Figure 7.1. Also, both matrices in (7.3)
represent covariance graph models with edge and vertex symmetries.

7.2 Maximum Likelihood Estimator and Its Dual
Now that we have seen motivating examples, we formally define the MLE problem for a
linear covariance model L. Suppose we observe a random sample X(1), . . . , X(N) in Rn

from Nn(0,Σ). The sample covariance matrix is S = 1
N

∑N
i=1X

(i)X(i)T . The matrix S is
positive semidefinite. Our aim is to maximize the function

`(Σ) = log det Σ−1 − tr(SΣ−1) subject to Σ ∈ L.

Following [Sul18, Proposition 7.1.10], this equals the log-likelihood function times N/2.
We fix the standard inner product 〈A,B〉 = tr(AB) on the space Sn of symmetric

matrices. The orthogonal complement L⊥ to a subspace L ⊂ Sn is defined as usual.

Proposition 7.1. Finding all the critical points of the log-likelihood function `(Σ) amounts
to solving the following system of linear and quadratic equations in 2 ·

(n+1
2
)
unknowns:

Σ ∈ L, KΣ = In, KSK −K ∈ L⊥. (7.4)

Proof. The matrix Σ is a critical point ` if and only if, for every U ∈ L, the derivative of `
at Σ in the direction U vanishes. This directional derivative equals

−tr(Σ−1U) + tr(SΣ−1UΣ−1).

This formula follows by multivariate calculus from two facts: (i) the derivative of the matrix
mapping Σ 7→ Σ−1 is the linear transformation U 7→ Σ−1UΣ−1; (ii) the derivative of the
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function Σ 7→ log det Σ is the linear functional U 7→ tr(Σ−1U).
Using the identity K = Σ−1, vanishing of the directional derivative is equivalent to

−〈K,U〉+ 〈KSK,U〉 = 0.

The condition 〈KSK −K,U〉 = 0 for all U ∈ L is equivalent to KSK −K ∈ L⊥.

Example (3× 3 Toeplitz matrices). Let L be the space of Toeplitz matrices

Σ =

γ0 γ1 γ2
γ1 γ0 γ1
γ2 γ1 γ0

 .
This space has dimension 3 in S3 ' R6. Fix a sample covariance matrix S = (sij) with real
entries. We need to solve the system (7.4). This consists of 3 + 9 + 3 = 15 equations in
6 + 6 = 12 unknowns, namely the entries of the covariance matrix Σ = (σij) and its inverse
K = (kij). The condition Σ ∈ L gives three linear polynomials:

σ11 − σ33 , σ12 − σ23 , σ22 − σ33.

The condition KΣ = I3 translates into nine bilinear polynomials:

σ11k11 + σ12k12 + σ13k13 − 1, σ12k11 + σ22k12 + σ23k13, σ13k11 + σ23k12 + σ33k13,
σ11k12 + σ12k22 + σ13k23, σ12k12 + σ22k22 + σ23k23 − 1, σ13k12 + σ23k22 + σ33k23,
σ11k13 + σ12k23 + σ13k33, σ12k13 + σ22k23 + σ23k33, σ13k13 + σ23k23 + σ33k33 − 1.

Finally, the condition KSK −K ∈ L⊥ translates into three quadratic polynomials:

k2
11s11 + k2

12s11 + k2
13s11 + 2k11k12s12 + 2k12k22s12 + 2k13k23s12 + 2k11k13s13

+2k12k23s13 + 2k13k33s13 + k2
12s22 + k2

22s22 + k2
23s22 + 2k12k13s23 + 2k22k23s23

+2k23k33s23 + k2
13s33 + k2

23s33 + k2
33s33 − k11 − k22 − k33,

k23s13 + k12k33s13 + k12k22s22 + k22k23s22 + k13k22s23 + k12k23s23
+k2

23s23 + k22k33s23 + k13k23s33 + k23k33s33 − k12 − k23,

k11k13s11 + k12k13s12 + k11k23s12 + k2
13s13 + k11k33s13

+k12k23s22 + k13k23s23 + k12k33s23 + k13k33s33 − k13.

The zero set of these 15 polynomials in 12 unknowns consists of three points (Σ̂, K̂). We
present a concrete instance with multiple local solutions:

S =

 4/5 −9/5 −1/25
−9/5 79/16 25/24
−1/25 25/24 17/16

 ≈
 0.8000 −1.8000 −0.0400
−1.8000 4.9375 1.0417
−0.0400 1.0417 1.0625

 . (7.5)

For this sample covariance matrix all three critical points are real and positive definite. The
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three Toeplitz matrices that solve the score equations for this S are

[ γ̂0 , γ̂1 , γ̂2 ] log-likelihood value
[2.52783,−0.215929,−1.45229] −5.35 global maximum
[2.39038,−0.286009, 0.949965] −5.41 local maximum
[2.28596,−0.256394, 0.422321] −5.42 saddle point

So, even in this tiny example, our optimization problem has multiple local maxima in the
cone S3

+. A numerical study of this phenomenon will be presented in Section 7.5.

In this chapter, we also consider the dual maximum likelihood estimator as a more com-
putationally efficient alternative. Dual estimation is based on the maximization of a dual
likelihood function. In the Gaussian case, this is motivated by interchanging the role of the
parameter matrix Σ and the empirical covariance matrix S. The Kullback-Leibler divergence
of two Gaussian distributions N(0,Σ0) and N(0,Σ1) on Rn is equal to

KL(Σ0,Σ1) = 1
2

(
tr(Σ−1

1 Σ0)− n+ log
(det Σ1

det Σ0

))
.

Computing the MLE is equivalent to minimizing KL(Σ0,Σ1) with respect to Σ1 with Σ0 = S.
On the other hand, the dual MLE is obtained by minimizing KL(Σ0,Σ1) with respect to Σ0
with Σ1 = S. Equivalently, we set W = S−1 and we maximize

`∨(Σ) = log det Σ− tr(WΣ).

The idea of utilizing the “wrong” Kullback-Leibler distance is ubiquitous in variational
inference and is central for mean field approximation and related methods. The idea of using
this estimation method for Gaussian linear covariance models is very natural. It results in a
unique maximum, since Σ 7→ `∨(Σ) is a convex function on the positive definite cone Sn+.
See [Chr89] and also [CDR07, Section 3.2] and [Kau96, Section 4].

The following algebraic formulation is the analogue to Proposition 7.1.

Proposition 7.2. Finding all the critical points of the dual log-likelihood function `∨ amounts
to solving the following system of equations in 2 ·

(n+1
2
)
unknowns:

Σ ∈ L, KΣ = In, K −W ∈ L⊥. (7.6)

Proof. After switching the role of K and Σ, and of W and S, our problem becomes MLE
for linear concentration models. Formula (7.6) is found in [SU10, equation (10)].

The next result lists properties of the dual MLE that are important for statistics.

Proposition 7.3. The dual maximum likelihood estimator of a Gaussian linear covariance
model is consistent, asymptotically normal, and first-order efficient.

Proof. See Theorem 3.1 and Theorem 3.2 in [Chr89].
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First-order efficiency means that the asymptotic variance of the properly normalized dual
MLE is optimal, that is, it equals the asymptotic variance of the MLE.

In this chapter, we focus on algebraic structures, and we note the following important
distinction between our two estimators. The MLE requires the quadratic equations KSK −
K ∈ L⊥ in (7.4), whereas the dual MLE requires the linear equations K−W ∈ L⊥ in (7.6).
The latter are easier to solve than the former, and they give far fewer solutions. This is
quantified by the tables for the ML degrees in the next sections.

We are particularly interested in models whose dual ML estimator (Σ̌, Ǩ) can be written
as an explicit expression in the sample covariance matrix S. We identify such scenarios in
Sections 7.5 and 7.6. Here is a first example to illustrate this point.

Example. We revisit the Toeplitz model in Example 7.2. For the dual MLE, the three
quadratic polynomials in K are now replaced by three linear polynomials:

k11 + k22 + k33 − w11 − w22 − w33 , k12 + k23 − w12 − w23 , k13 − w13.

The wij are the entries of the inverse sample covariance matrix W = S−1. The new system
has two solutions, and we can write the σ̌ij and ǩij in terms of the wij (or the sij) using
the familiar formula for solving quadratic equations in one variable. Specifically, for the
covariance matrix S in (7.5) we find that the dual MLE is given by

[ γ̌0, γ̌1, γ̌2 ] =
[
0.203557267562 , −0.189349961613 , 0.1963649733282

]
=
[ 1284368265268038839512

12363704694314904961417 + 52
√

561647777654592987689702150027364667081
12363704694314904961417 ,

− 5817390611804320873051
61818523471574524807085 −

655679934637
√

561647777654592987689702150027364667081
163146905524715599705244729886305 ,

1990451408446510673691859
22254668449766828930550600 + 264990063915733

√
561647777654592987689702150027364667081

58732885988897615893888102759069800
]
.

Needless to say, nonlinear algebra goes much beyond the quadratic formula. In what follows,
we shall employ state-of-the-art methods for solving polynomial equations.

7.3 General Linear Constraints
The maximum likelihood degree of a linear covariance model L is, by definition, the number
of complex solutions to the likelihood equations (7.4) for generic data S. This is abbreviated
ML degree; see [Sul18, Section 7.1]. To compute the ML degree, take S to be a random
symmetric n×n matrix and count all complex critical points of the likelihood function `(Σ)
for Σ ∈ L. Equivalently, the ML degree of the model L is the number of complex solutions
(Σ,K) to the polynomial equations in (7.4).

We also consider the complex critical points of the dual likelihood function `∨(Σ). Their
number, for a generic matrix S ∈ Sn, is the dual ML degree of L. It coincides with the
number of complex solutions (Σ,K) to the polynomial equations in (7.6).

Our ML degrees can be computed symbolically in a computer algebra system that rests
on Gröbner bases. However, this approach is limited to small instances. To get further, we
use the methods from numerical nonlinear algebra described in Section 7.4.
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We here focus on a generic m-dimensional linear subspace L of Sn. In practice, this
means that a basis for L is chosen by sampling m matrices at random from Sn.

Proposition 7.4. The ML degree and the dual ML degree of a generic subspace L of
dimension m in Sn depends only on m and n. It is independent of the particular choice of
L. For small parameter values, these ML degrees are listed in Table 7.2.

Proof. The independence rests on general results in algebraic geometry [SW05, Cor. A.14.2],
to the effect that the system (7.4) (resp. (7.6)) can be considered as a system parametrized by
the coordinates of L and S (resp. W ). The ML degree will be the same for all specializations
to R that remain outside a certain discriminant hypersurface. Table 7.2 and further values
are computed rapidly using the software described in Section 7.4.

m n
2 3 4 5 6

2 1 3 5 7 9
3 1 7 19 37 61
4 7 45 135 299
5 3 71 361 1121
6 1 81 753 3395
7 63 1245 8513
8 29 1625 17867
9 7 1661 31601
10 1 1323 47343
11 801 60177
12 347 64731
13 97 58561
14 15 44131
15 1 27329
16 13627
17 5341
18 1511
19 289
20 31
21 1

m n
2 3 4 5 6

2 1 2 3 4 5
3 1 4 9 16 25
4 4 17 44 90
5 2 21 86 240
6 1 21 137 528
7 17 188 1016
8 9 212 1696
9 3 188 2396
10 1 137 2886
11 86 3054
12 44 2886
13 16 2396
14 4 1696
15 1 1016
16 528
17 240
18 90
19 25
20 5
21 1

Table 7.2: ML degrees and dual ML degrees for generic models

The dual ML degree was already studied by Sturmfels and Uhler in [SU10, Section 2].
Our table on the right is in fact found in their paper. The symmetry along its columns is
proved in [SU10, Theorem 2.3]. It states that the dual ML degree for dimension m coincides
with the dual ML degree for codimension m − 1. This is derived from the equations (7.6)
by an appropriate homogenization. Namely, the middle equation is clearly symmetric under
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switching the role of K and Σ, and the linear equations on the left and on the right in (7.6)
can also be interchanged under this switch.

It was conjectured in [SU10, Section 2] that, for fixed m, the dual ML degree is a
polynomial of degree m − 1 in the matrix size n. This is easy to see for m ≤ 3. The
polynomials for m = 4 and m = 5 were also derived in [SU10, Section 2].

The situation is similar but more complicated for the ML degree. First of all, the symmetry
along columns no longer holds as seen on the left in Table 7.2. This is explained by the
fact that the linear equation K − W ∈ L⊥ is now replaced by the quadratic equation
KSK −K ∈ L⊥. However, the polynomiality along the rows of Table 7.2 seems to persist.
For m = 2, the ML degree equals 2n − 3, as shown recently by Coons, Marigliano and
Ruddy [CMR20]. For m ≥ 3, we propose the following conjecture.

Conjecture 7.5. The ML degree of a linear covariance model of dimensionm is a polynomial
of degree m−1 in the ambient dimension n. For m = 3, this ML degree equals 3n2−9n+7,
and for m = 4 it equals 11/3n3 − 18n2 + 85/3n− 15.

We now come to diagonal linear covariance models. For these models, L is a linear
subspace of dimension m inside the space Rn of diagonal n × n-matrices. We wish to
determine the ML degree and dual ML degree when L is generic in Rn.

In the diagonal case, the score equations simplify as follows. Both the covariance matrix
and the concentration matrix are diagonal. We eliminate the entries of Σ by setting K =
diag(k1, . . . , kn) and Σ = diag(k−1

1 , . . . , k−1
n ). We also write s1, . . . , sn for the diagonal

entries of the sample covariance matrix S, and wi = s−1
i for their reciprocals. Finally, let

L−1 denote the reciprocal linear space of L, i.e. the variety obtained as the closure of the
set of coordinatewise reciprocals of vectors in L ∩ (R∗)n.

m n
3 4 5 6 7

2 3 5 7 9 11
3 1 7 17 31 49
4 1 15 49 111
5 1 31 129
6 1 63
7 1

m n
3 4 5 6 7

2 2 3 4 5 6
3 1 3 6 10 15
4 1 4 10 21
5 1 5 21
6 1 15
7 1

Table 7.3: ML degrees and dual ML degrees for generic diagonal models

Proposition 7.6. Let L ⊂ Rn be a linear space, viewed as a Gaussian covariance model of
diagonal matrices. The score equations for the likelihood in (7.4) and the dual likelihood in
(7.6) can be written as systems of n equations in n unknowns as follows:

(7.4’) (k1, . . . , kn) ∈ L−1 and (s1k
2
1 − k1, s2k

2
2 − k2, . . . , snk

2
n − kn) ∈ L⊥,

(7.6’) (k1, . . . , kn) ∈ L−1 and (k1 − w1, k2 − w2, . . . , kn − wn) ∈ L⊥.

The number of complex solutions to (7.6’) for generic L of dimension m equals
(n−1
m−1

)
.
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Proof. The translation of (7.4) and (7.6) to (7.4’) and (7.6’) is straightforward. The equa-
tions (7.6’) represent a general linear section of the reciprocal linear space L−1. Proudfoot
and Speyer showed that the degree of L−1 equals the Möbius invariant of the underlying
matroid. We refer to [KV19] for a recent study and many references. This Möbius invariant
equals

(n−1
m−1

)
in the generic case, when the matroid is uniform.

The left side of Table 7.3 indicates that as before the mth row gives the values of a
polynomial of degree m− 1. For instance, for m = 3 we find 2n2 − 8n+ 7, and for m = 4
we find 4/3n3 − 10n2 + 68/3n− 15. After the publication of the article [STZ20] on which
this chapter is based Eur, Fife, Samper and Seynnaeve achieved in [EFSS20] to express the
number of complex solutions to (7.4’) as as a matroid invariant.and thereby giving a closed
formula for the number of complex solutions to (7.4’).

Theorem 7.7 ([EFSS20, Cor. 1.2]). Let L ⊂ Rn be a linear space of dimensionm, viewed as
a Gaussian covariance model of diagonal matrices. The general number of complex solutions
to (7.4’) is

m∑
i=1

(n−i−1
m−i

)
2m−i

This underlines how experimental numerical computations can spur new theoretical results.

7.4 Numerical Nonlinear Algebra in Action
One of our main contributions is the Julia package LinearCovarianceModels.jl for
estimating linear covariance models; see (7.1). Given L, our package computes the ML
degree, and the dual ML degree. For any S, it finds all critical points and it selects those
that are local maxima. The following example explains how this is done.

Example. We use the package to verify Example 7.2:
julia> using LinearCovarianceModels
julia> Σ = toeplitz(3)
3-dimensional LCModel:
θ1 θ2 θ3
θ2 θ1 θ2
θ3 θ2 θ1

We compute the ML degree of the family Σ by computing all solutions for a generic instance
using the monodromy method described in Section 3.5. For this it is necessary to construct
a start pair for the score equations (7.4) of our MLE problem. To accomplish this, we first
pick a random matrix Σ0 in the subspace L. We next compute K0 by inverting Σ0. Finally
we need to find a symmetric matrix S0 such that K0S0K0 −K0 ∈ L⊥. Note that this is
a linear system of equations and hence directly solvable. In this manner, we easily find a
start pair (x0, p0) by setting p0 = S0 and x0 = (Σ0,K0). The pair of solution and generic
instance is called an ML degree witness.
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julia> W = ml_degree_witness(Σ)
MLDegreeWitness:
◦ ML degree → 3
◦ model dimension → 3
◦ dual → false

By default, the computation of the ML degree witness relies on a heuristic stopping criterion.
We can numerically verify the correctness by using the trace test described in Section 3.6.2.

julia> verify(W)
Compute additional witnesses for completeness check...
Computed 10 additional witnesses
Compute trace using two parameter homotopies...
Norm of trace: 2.5977211651689205e-16
true

We now input the specific sample covariance matrix in (7.5), and we compute all critical
points of this MLE problem using the ML degree witness from the previous step.

julia> S = [4/5 -9/5 -1/25; -9/5 79/16 25/24; -1/25 25/24 17/16];
julia> critical_points(W, S)
3-element Array{Tuple{Array{Float64,1},Float64,Symbol},1}:
([2.39038, -0.286009, 0.949965], -5.421751313919751, :local_maximum)
([2.52783, -0.215929, -1.45229], -5.346601549034418, :global_maximum)
([2.28596, -0.256394, 0.422321], -5.424161999175718, :saddle_point)

If only the global maximum is of interest then this can also be computed directly.
julia> mle(W, S)
3-element Array{Float64,1}:
2.527832268219689
-0.21592947057775033
-1.4522862659134732

By default only positive definite solutions are reported. To list all critical points we run the
command with an additional option.

julia> critical_points(W, S, only_positive_definite=false)

In this case, since the ML degree is 3, we are not getting more solutions.

7.5 Local Maxima versus Rational MLE
The theme of this chapter is maximum likelihood inference for linear covariance models.
We developed some numerical nonlinear algebra for this problem, and we offer a software
package (7.1). From the applications perspective, this is motivated by the fact that the
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likelihood function is non-convex. It can have multiple local maxima. A concrete instance
for 3× 3 Toeplitz matrices was shown in Example 7.2.

In this section, we undertake a more systematic experimental study of local maxima. Our
aim is to answer the following question: there is the theoretical possibility that `(Σ) has
many local maxima, but can we also observe this in practice?

To address this question, we explored a range of linear covariance models L. For each
model, we conducted the following experiment. We repeatedly generated sample covariance
matrices S ∈ Sn+. This was done as follows. We first sample a matrix X ∈ Rn×n by picking
each entry independently from a normal distribution with mean zero and variance one. And,
then we set S := XXT /n. This is equivalent to sampling nS ∈ Sn+ from the standard
Wishart distribution with n degrees of freedom.

m
2 3 4 5 6 7 8 9 10 11 12 13 14

ML degree 7 37 135 361 753 1245 1625 1661 1323 801 347 97 15

max 2 3 3 5 5 5 5 6 7 5 4 2 1
max pd 1 2 3 3 4 4 4 4 5 5 4 2 1

multiple 0.4% 5.8 13.8 31.2 37.2 39.0 40.6 37.4 32.0 20.4 13.8 3.0 0.0
multiple pd 0.0% 4.6 11.2 22.4 25.2 31.6 33.0 34.8 29.6 19.4 13.0 3.0 0.0

Table 7.4: Experiments for generic m-dimensional linear subspaces of S5.

For each of the generated sample covariance matrices S, we computed the real solutions
of the likelihood equations (7.4). From these, we identified the set of all local maxima in Sn,
and we extracted its subset of local maxima in the positive definite cone Sn+. We recorded
the numbers of these local maxima. Moreover, we kept track of the fraction of instances S
for which there were multiple (positive define) local maxima. In Table 7.4, we present our
results for n = 5 and generic linear subspaces L.

For each m between 2 and 14, we selected five generic linear subspaces L in the 15-
dimensional space S5. Each linear subspace L was constructed by choosing a basis of
positive definite matrices. The basis elements were constructed with the same sampling
method as the sample covariance matrices. The ML degree of this linear covariance model
is the corresponding entry in the n = 5 column on the left in Table 7.2. These degrees are
repeated in the row named ML degree in Table 7.4.

For each model L, we generated 100 sample covariance matrices S, and we solved the
likelihood equations (7.4) using our software LinearCovarianceModels.jl. The row max
denotes the largest number of local maxima that was observed in these 100 experiments.
The row multiple gives the fraction of instances that resulted in two or more local maxima.
These two numbers pertain to local maxima in S5. The rows max pd and multiple pd are
the analogues restricted to the positive definite cone S5

+.
For an illustration, let us discuss the models of dimension m = 7. These equations (7.4)

have 1245 complex solutions, but the number of real solutions is much smaller. Nevertheless,
in two-fifths of the instances (39.0%) there were two or more local maxima in S5. In one-
third of the instances (31.6%), the same happened in S5

+. The latter is the case of interest
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in statistics. One instance had four local maxima in S5
+.

The second experiment we report concerns a combinatorially defined class of linear co-
variance models, namely the Brownian motion tree models in (7.2). We consider eleven
combinatorial types of trees with 5 leaves. For each model, we perform the experiment
described above, but we now used 500 sample covariance matrices per model. Our results
are presented in Table 7.5, in the same format as in Table 7.4.

tree number
1 2 3 4 5 6 7 8 9 10 11

ML degree 37 37 81 31 27 31 31 27 13 17 17
max 3 3 4 3 3 3 4 3 3 3 3
max pd 3 2 3 3 3 3 2 2 3 3 3
multiple 21.2% 22.8 24.2 15.6 23.0 21.2 21.2 15.4 13.8 16.2 12.4
multiple pd 8.2% 9.4 14.0 10.0 15.8 13.0 12.2 8.8 13.8 16.2 12.4

Table 7.5: Experiments for eleven Brownian motion tree models with 5 leaves.

The eleven trees are numbered by the order in which they appear in Table 7.6. For
instance, tree 1 gives the 7-dimensional model in S5

+ whose covariance matrices are

Σ =


γ1 γ6 γ6 γ6 γ7
γ6 γ2 γ6 γ6 γ7
γ6 γ6 γ3 γ6 γ7
γ6 γ6 γ6 γ4 γ7
γ7 γ7 γ7 γ7 γ5

 .
This model has ML degree 37. Around eight percent of the instances led to multiple maxima
among positive definite matrices. Up to three such maxima were observed.

The results reported in Tables 7.4 and 7.5 show that the maximal number of local maxima
increases with the ML degree. But, they do not increase as fast as one would expect from
the growth of the ML degree. On the other hand, the frequency of observing multiple local
maxima seems to be roughly related to the ML degree

Here is an interesting observation to be made in Table 7.5. The last three trees, labeled
9, 10 and 11, are the binary trees. These have the maximum dimension 2n − 2. For these
models, every local maximum in Sn is also in the positive definite cone Sn+. We also verified
this for all binary trees with n = 6 leaves. This is interesting since the positive definiteness
constraint is the hardest to respect in an optimization routine. It is tempting to conjecture
that this persists for all binary trees with n ≥ 7.

There is another striking observation in Table 7.6. The dual ML degree for binary trees is
always equal to one. We shall prove in Theorem 7.10 that this holds for any n. This means
that the dual MLE can be expressed as a rational function in the data S. Hence there is
only one local maximum, which is therefore the global maximum.

We close this section with a few remarks on the important special case when the ML
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degree or the dual ML degree is equal to one. This holds if and only if each entry of the
estimated matrix Σ̂ or Σ̌ is a rational function in the

(n+1
2
)
quantities sij .

Rationality of the MLE has received a lot of attention in the case of discrete random
variables. See [Sul18, Section 7.1] for a textbook reference. If the MLE of a discrete
model is rational then its coordinates are alternating products of linear forms in the data
[Sul18, Theorem 7.3.4]. This result due to Huh was refined in [DMS21, Theorem 1]. At
present we have no idea what the analogue in the Gaussian case might look like.
Problem 7.8. Characterize all Gaussian models whose MLE is a rational function.

In addition to the binary trees in Theorem 7.10, statisticians are familiar with a number of
situations when the dual MLE is rational. The dual MLE is the MLE of a linear concentration
model with the sample covariance matrix S replaced by its inverse W . This is studied in
[SU10] and in many other sources on Gaussian graphical models and exponential families.
The following result paraphrases [SU10, Theorem 4.3].

Proposition 7.9. If a linear covariance model L is given by zero restrictions on Σ, then the
dual ML degree is equal to one if and only if the associated graph is chordal.

It would be interesting to extend this result to other combinatorial families, such as colored
covariance graph models (cf. [HL08]), including structured Toeplitz matrices.

The following example illustrates Problem 7.8 and it raises some further questions.

Example. We present a linear covariance model such that both the MLE and the dual MLE
are rational functions. Fix n ≥ 2 and let L be the hyperplane with equation σ12 = 0. By
Proposition 7.9, the dual ML degree of L is one. The model is dual to the decomposable
undirected graphical model with missing edge {1, 2}.

Following [Lau96,Sul18], we obtain the rational formula for its dual MLE:

ǩ12 = W1,RW
−1
R,RWR,2, and ǩij = wij for (i, j) 6= (1, 2). (7.7)

Here R = {3, . . . , n} and W•,• is our notation for submatrices of W = (wij) = S−1.
The ML degree of the model L is also one. To see this, we note that L is the DAG model

with edges i→ j whenever i < j unless (i, j) = (1, 2). By [Lau96, Section 5.4.1], the MLE
of any Gaussian DAG model is rational. In our case, we find K̂ = W +A, where A is the
n× n matrix that is zero apart from the upper left 2× 2 block

A12,12 =
[
s−1

11 0
0 s−1

22

]
− 1

s11s22 − s2
12

[
s22 −s12
−s12 s11

]
.

The entries in Σ̌ = (Ǩ)−1 and Σ̂ = (K̂)−1 are rational functions in the data sij . But, unlike
in the discrete case of [DMS21], here the rational functions are not products of linear forms.
Problem 7.8 asks for an understanding of its irreducible factors.

Example 7.5 raises many questions. First of all, can we characterize all linear spaces L
with rational formulas for their MLE, or their dual MLE, or both of them? Second, it would
be interesting to study arbitrary models L that are hyperplanes. Consider the entries for
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m =
(n+1

2
)
− 1 in Tables 7.2 and 7.4. We know from [SU10, Section 2.2] that the dual ML

degree equals n− 1. The ML degree seems to be 2n−1 − 1. In all cases, there seems to be
only one local (and hence global) maximum. How to prove these observations? Finally, it
is worthwhile to study the MLE when L⊥ is a generic symmetric matrix of rank r. What is
the ML degree in terms of r and n?

7.6 Brownian Motion Tree Models
We now study the linear space LT associated with a rooted tree T with n leaves. The
equations of LT are σij = σkl whenever lca(i, j) = lca(k, l). In the literature (cf. [Fel73,
SUZ20]), one assumes that the parameters θA in (7.2) are nonnegative. Here, we relax this
hypothesis: we allow all covariance matrices in the spectrahedron LT ∩ Sn+.

The ML degree and its dual do not depend on how the leaves of a tree are labeled
but only on the tree topology. For fixed n, each tree topology is uniquely identified by
the set of clades. Since the root clade {1, . . . , n} and the leaf-clades {1}, . . . ,{n} are
part of every tree, they are omitted in our notation. For example, if n = 5 then the tree
{{1, 2}, {3, 4}, {3, 4, 5}} is the binary tree with four inner vertices corresponding to the three
non-trivial clades mentioned explicitly. This tree is depicted in Figure 7.1.

We computed the ML degree and the dual ML degree of LT for many trees T . In
Table 7.6, we report results for five and six leaves. We notice that the dual ML degree is
exactly one for all binary trees. This suggests that the dual MLE is a rational function. Our
main result in this section (Theorem 7.10) says that this is indeed true.

The equations (7.6) for the dual ML degree can be written as eTA(K −W )eA = 0 for all
clades A. Here W = (wij) is given and K−1 ∈ LT is unknown. We abbreviate

wA,B =
∑
i∈A

∑
j∈B

wij = eTAWeB. (7.8)

The same notation is used for general matrices. We present two examples with n = 4.

Example. Consider the tree with clades {1, 2}, {3, 4}, shown in [SUZ20, Figure 1]. The
dual MLE Ǩ satisfies ǩii = wii for i = 1, 2, 3, 4, and ǩ12 = w12, ǩ34 = w34, and

ǩij = w12,34
wi,12wj,34
w12,12w34,34

for i ∈ {1, 2}, j ∈ {3, 4}.

Example. The tree with clades {1, 2}, {1, 2, 3} has ǩii = wii, ǩ12 = w12, and

ǩ13 = w12,3
w1,12
w12,12

, ǩ14 = w123,4
w1,12w12,123
w12,12w123,123

, ǩ23 = w12,3
w2,12
w12,12

,

ǩ24 = w123,4
w2,12w12,123
w12,12w123,123

, ǩ34 = w123,4
w123,3
w123,123

.

Both examples were computed in Mathematica using the description of the Brownian motion
tree model in terms of the inverse covariance matrix given in [SUZ20].
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n Clades ML degree dual ML degree
5 {1, 2, 3, 4} 37 11
5 {1, 2} 37 11
5 {1, 2, 3} 81 16
5 {1, 2}, {3, 4, 5} 31 4
5 {1, 2}, {3, 4} 27 4
5 {1, 2, 3}, {1, 2, 3, 4} 31 4
5 {1, 2}, {1, 2, 3} 31 4
5 {1, 2}, {1, 2, 3, 4} 27 4
5 {1, 2}, {3, 4}, {1, 2, 3, 4} 13 1
5 {1, 2}, {3, 4}, {1, 2, 5} 17 1
5 {1, 2}, {1, 2, 3}, {1, 2, 3, 4} 17 1
6 {1, 2, 3, 4, 5} 95 26
6 {1, 2} 95 26
6 {1, 2, 3, 4} 259 44
6 {1, 2, 3} 259 44
6 {1, 2, 3}, {4, 5, 6} 221 16
6 {1, 2}, {3, 4, 5, 6} 101 11
6 {1, 2, 3, 4}, {1, 2, 3, 4, 5} 101 11
6 {1, 2}, {3, 4} 81 11
6 {1, 2}, {1, 2, 3} 101 11
6 {1, 2}, {3, 4, 5} 181 16
6 {1, 2}, {1, 2, 3, 4, 5} 81 11
6 {1, 2, 3}, {1, 2, 3, 4} 221 16
6 {1, 2, 3}, {1, 2, 3, 4, 5} 181 16
6 {1, 2}, {1, 2, 3, 4} 181 16
6 {1, 2}, {3, 4}, {5, 6} 63 4
6 {1, 2}, {3, 4}, {1, 2, 3, 4} 99 4
6 {1, 2}, {1, 2, 3}, {4, 5, 6} 115 4
6 {1, 2}, {3, 4, 5}, {3, 4, 5, 6} 115 4
6 {1, 2}, {3, 4, 5}, {1, 2, 3, 4, 5} 99 4
6 {1, 2}, {3, 4}, {1, 2, 5, 6} 83 4
6 {1, 2}, {3, 4}, {1, 2, 3, 4, 5} 63 4
6 {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5} 115 4
6 {1, 2}, {3, 4}, {1, 2, 5} 83 4
6 {1, 2}, {1, 2, 3}, {1, 2, 3, 4} 115 4
6 {1, 2}, {1, 2, 3}, {1, 2, 3, 4, 5} 83 4
6 {1, 2}, {1, 2, 3, 4}, {1, 2, 3, 4, 5} 83 4
6 {1, 2}, {3, 4}, {5, 6}, {1, 2, 3, 4} 53 1
6 {1, 2}, {3, 4}, {1, 2, 5}, {3, 4, 6} 61 1
6 {1, 2}, {3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4, 5} 53 1
6 {1, 2}, {3, 4}, {1, 2, 5}, {1, 2, 5, 6} 61 1
6 {1, 2}, {3, 4}, {1, 2, 5}, {1, 2, 3, 4, 5} 53 1
6 {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5} 61 1

Table 7.6: ML degrees and dual ML degrees for Brownian motion tree models with five and six leaves. Binary
trees are highlighted.
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Recall that for v ∈ V we write de(v) for the set of leaves of T that are descendants of v.
The following theorem generalizes formulas in the above two examples.

Theorem 7.10. Consider the model LT given by a rooted binary tree T with n leaves. The
dual MLE Ǩ = (ǩij) satisfies ǩii = wi,i for all i, and its off-diagonal entries are

ǩij = wA,B
∏
u→v

wde(v),de(u)
wde(u),de(u)

for 1 ≤ i < j ≤ n. (7.9)

Here A,B are the clades of the two children of lca(i, j). The product is over all edges u→ v
of T , except for the two edges with u = lca(i, j), on the path from i to j in T .

Proof. We refer for the proof to [STZ20, Theorem 7.3].

In our concluding example, we compare the MLE and its dual in a special case.

Example. Fix the five-leaf tree in Figure 7.1, with clades {1, 2}, {3, 4}, {3, 4, 5}. For sim-
plicity assume that the data generating distribution has all parameters θA in (7.2) equal
to one. For each sample size n = 50, 200, 500, 5000, we run 1000 iterations to obtain a
simple Monte Carlo estimator of the mean squared errors as measured by E‖Σ̂− Σ∗‖2 and
E‖Σ̌ − Σ∗‖2, where Σ∗ is the true covariance matrix and ‖ · ‖ is a given matrix norm. To
have a direct comparison between both estimators, we also approximate E‖Σ̂ − Σ̌‖2. We
obtain the following numbers for the operator norm.

50 200 500 5000
approx. E‖Σ̂− Σ∗‖2 5.44 1.30 0.55 0.05
approx. E‖Σ̌− Σ∗‖2 5.28 1.31 0.55 0.05
approx. E‖Σ̂− Σ̌‖2 0.38 0.02 0.00 0.00

We see that the two estimators have essentially the same statistical performance. On average,
they lie very close to each other. The dual MLE, which is available in closed form, thus offers
a very attractive alternative to the MLE. Similar results were obtained for the Frobenius norm
and the `∞-norm but they are not reported here.

The estimates in the previous example were computed by evaluating the function in
Theorem 7.10. The expression (7.9) is an alternating product of linear forms, reminiscent
of [DMS21, Theorem 1]. However, this structure does not generalize, by Example 7.5, thus
underscoring Problem 7.8.

7.7 Conclusion
In this chapter, we applied numerical nonlinear algebra to maximum likelihood estimation
for Gaussian models defined by linear constraints on the covariance matrix. We examined
the generic case as well as special models (e.g. Toeplitz, sparse, trees) that are of interest
in statistics. We studied the maximum likelihood degree and its dual analogue, and we
introduced a new software package LinearCovarianceModels.jl for reliably solving the
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score equations. LinearCovarianceModels.jl is based on HomotopyContinuation.jl.
In addition, we identified several scenarios for which the estimator is a rational function.
We stress that numerical nonlinear algebra and our software LinearCovarianceModels.jl
played an essential role in getting to this point. Namely, with computations as described in
Section 7.4, we created Table 7.6. After seeing that table, we conjectured that the dual MLE
for binary trees is one. This led us to find the rational formula (7.9). This is most likely just
one of many instance where numerical experimentation can lead to new theoretical insights.
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8 Catastrophe in Elastic Tensegrity
Frameworks

This chapter is based on the article “Catastrophe in elastic tensegrity frameworks” [HT20]
by Alexander Heaton and Sascha Timme. The article is currently under review. A preprint
is available at https://arxiv.org/abs/2009.13408.

Tensegrity structures appear in nature and engineering, scaling in size from nanometers
[LHT+10] to meters [TP03], used on the earth [Mot03, SdO09] and in outer space [Tib02,
ZGS+12]. Since the tension in the lightweight cables provides stability [Cal78,ZO15], they
can hold their shape without any locking mechanisms. This and other advantages make
tensegrity highly appealing for deployable structures [Pel01]. They can significantly change
size and shape, using several different functional configurations during their application.
In this chapter, we discuss elastic tensegrity frameworks (Definition 8.1) made from rigid
bars and elastic cables, similar to those appearing in [LWPQ17, SJM18], but also similar
to the tensegrity frameworks defined in [CW96] which are popular in the mathematics and
combinatorics literature. Instead of edge length inequalities as in [CW96], we use Hooke’s
law to introduce an energy function that distinguishes between bars and elastic cables. The
configuration is then determined by solving a constrained optimization problem. This provides
a large family of simple models that are effectively treated using the theory of elasticity and
energy minimization (see Definition 8.3). We use numerical nonlinear algebra to calculate all
equilibrium positions, in contrast to the more widely-used iterative methods (e.g. Newton-
Raphson) that can only find one solution at a time, with no guarantees on finding them all.
Elastic tensegrity frameworks depend on many parameters, e.g., the length of its rigid bars
or the fixed position of some nodes. For a given framework, we can choose a space of
control parameters Ω whose values we view as the parameters we can manipulate. A path
y : [0, 1] ⊆ R → Ω is a map from the unit interval to the space of control parameters Ω
that describes how the controls y(t) vary in time. We use numerical nonlinear algebra to
track the changes in stable equilibrium positions of the framework as the control parameters
vary. Most importantly, we are interested in a positive-dimensional semialgebraic subset
CΩ ⊆ Ω called the catastrophe set (Definition 8.9). This set records those values of control
parameters whose crossing could result in a discontinuous jump in the location of the nearest
local equilibrium since the current equilibrium can disappear after crossing CΩ. This loss of
equilibrium and the resulting behavior is called a catastrophe. The importance of this set
is well-known (see [Arn86] for an overview), but we find that studying it from the algebraic
perspective provides useful benefits. Therefore, the purpose of this chapter is to show how
techniques from numerical nonlinear algebra can be used to compute the catastrophe set CΩ.
For this, we introduce an algebraic reformulation in Section 8.2 that we use to compute a
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superset DΩ ⊇ CΩ which contains the relevant information for the original problem (Section
8.1). This algebraic set DΩ, the catastrophe discriminant, detects the merging of equilibrium
solutions from a parametrized family of constrained optimization problems.

Hooke’s law provides a simple model that has proven extremely effective in an enormous
amount of real-world situations. Also, in the article The Catastrophe Controversy [Guc79]
Guckenheimer writes “The application of Catastrophe - Singularity Theory to problems of
elastic stability has been the greatest success of the theory thus far.” Thus, catastrophe
discriminants are of known importance, but they are very difficult to explicitly compute and
this has limited their usefulness. With the development of efficient techniques in numerical
nonlinear algebra, explicit computation of catastrophe discriminants is now within reach.
Therefore, another purpose of this chapter is to explicitly describe these computations for a
family of simple models (elastic tensegrity frameworks) that will be useful in many different
applications.

1 2 3

654

Figure 8.1: Loop crossing the catastrophe set. The black edge is a rigid bar and the green edges are elastic
cables. Square nodes have fixed positions, the cross node is controlled around a loop, and the circular node’s
position is determined by minimizing the potential energy in the green elastic cables.

A running example, simple enough to understand yet complicated enough to illustrate the
advantage of knowing CΩ, is Zeeman’s catastrophe machine. Zeeman’s catastrophe machine
consists of a rigid bar that can rotate freely around one of its endpoints. Attached to the
non-fixed endpoint are two elastic cables. The end of one of the cables is fixed, the other
can be moved freely. The machine and its behavior are depicted in Figure 8.1 at six discrete-
time snapshots. For more on this example, see [PW73], where they give a parametrization
of CΩ for a simplified machine and implicit equations defining CΩ for the actual machine.
See also [Arn86, Section 4]. In contrast, we use sample points to encode CΩ not only for
Zeeman’s machine but for any elastic tensegrity framework. The basic idea of Zeeman’s
machine is to control the free endpoint y(t) ∈ Ω ' R2 of one cable while the rotating rigid
bar settles into a position of minimum energy. Using numerical nonlinear algebra, we can
reliably compute all complex solutions to this constrained optimization problem and find
among them the real-valued and stable local minima. In addition, we compute a pseudo-
witness set for DΩ allowing effective sampling of the catastrophe set CΩ, and therefore easily
computable information on when catastrophes may occur, and how to avoid them entirely.
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For those readers new to Zeeman’s machine, consider the behavior depicted in Figure 8.1.
The black bar can rotate around its base, as the green elastic cables pull on its free endpoint.
As one of the cable endpoints moves smoothly, the stable equilibrium position of the machine
also moves smoothly... usually. Upon crossing CΩ it can happen that this stable equilibrium
disappears. This forces the machine to rapidly change shape, moving towards some new
equilibrium. Without knowledge of CΩ, these behaviors can be very surprising. For example,
moving the control point in a small loop does not ensure a return to the original position
for the machine (see Figure 8.1). Playing with this example, one quickly discovers the
advantages of knowing CΩ. Seemingly random catastrophes become easily predictable.

Figure 8.2: Catastrophe discriminant DΩ (left, degree 72) and catastrophe set CΩ (right) for Zeeman’s
machine, sampled numerically using homotopy continuation methods.

Section 8.1 gives the basic definitions for elastic tensegrity frameworks. In Section 8.2, we
describe an algebraic reformulation of the relevant energy minimization problem. In doing so,
we naturally arrive at the equilibrium degree of an elastic tensegrity framework (Definition
8.6), and the catastrophe degree of its catastrophe discriminant (Definition 8.8). These
numbers are intrinsic to the algebraic approach and characterize the algebraic complexity
of each elastic tensegrity framework for a dense set of control parameters. Though the
algebraic approach naturally deals with the algebraic set DΩ, the original problem deals with
the semialgebraic set CΩ (Definition 8.9). For Zeeman’s machine, both sets are shown in
Figure 8.2. We note that CΩ in Figure 8.2 is the envelope of a family of curves, each of
which is a conchoid of Nicomedes [Kle95,PW73]. Propositions 8.10 and 8.14 and Theorem
8.15 precisely relate the algebraic reformulation with the original setup. In Section 8.3, we
give more details on the required computations using numerical nonlinear algebra. Finally, in
Section 8.4 we demonstrate our newly developed tools on a four-bar linkage that becomes
an elastic tensegrity framework upon the attachment of two elastic cables (Figure 8.5). We
compute both DΩ and CΩ (Figure 8.6) and explicitly demonstrate one possible catastrophe
(Figure 8.7). Code that reproduces all examples in this chapter can be found at

https://doi.org/10.5281/zenodo.4056121.
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8.1 Elastic Tensegrity Frameworks
In this section, we formally introduce elastic tensegrity frameworks and the necessary defi-
nitions and concepts to talk about their equilibrium positions. Let G = ([n], E) be a graph
on [n] := {1, 2, . . . , n} nodes and E = B ∪ C edges. Edges are two-element subsets of [n].
Every ij ∈ B is a rigid bar between nodes i and j and we have `ij as its length. Similarly,
every ij ∈ C is an elastic cable between nodes i and j that has natural resting length rij
and a constant of elasticity cij . The graph G is embedded by a map p : [n] → Rd and we
denote the coordinates of the n nodes of G by p1 = (p11, . . . , p1d), . . . , pn ∈ Rd and identify
the space of coordinates with Rnd.

Example (Zeeman’s catastrophe machine). We illustrate the definitions and concepts of
this and the next section on Zeeman’s catastrophe machine. Zeeman’s machine is an elastic
tensegrity framework on n = 4 nodes with edges E = {14, 24, 34} partitioned as B = {14}
and C = {24, 34}. See Figure 8.3 for an illustration.

cable
bar

1

4
2

3

Figure 8.3: Our setup of Zeeman’s catastrophe machine

For every rigid bar ij ∈ B, we define the bar constraint polynomial

bij :=
∑
k∈[d]

(pik − pjk)2 − `2ij (8.1)

and denote by b the polynomial system whose component functions are the bij for ij ∈ B.
For each elastic cable ij ∈ C, we define its potential energy qij using Hooke’s law

qij := 1
2cij

max

0,
√∑
k∈[d]

(pik − pjk)2 − rij


2

with Q =
∑
ij∈C

qij . (8.2)

This says that the energy qij is proportional to the square of the distance the elastic cable
has been stretched past its natural resting length. Though we have only introduced rigid bars
and elastic cables, one could add compressed elastic edges that want to expand according
to Hooke’s law. For ease of exposition, we proceed with elastic cables and rigid bars, rather
than also including compressive struts in our notation.

We have introduced several variables. As shorthand we use the symbols p, `, r, c to refer
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to the variables
pik for i ∈ [n], k ∈ [d]
`ij for ij ∈ B
rij for ij ∈ C
cij for ij ∈ C.

(8.3)

In various examples, some of these variables are viewed as control parameters y ∈ Y whose
values we can fix or manipulate at will, while the other variables are viewed as internal
parameters x ∈ X whose values are determined by the controls y and the principle of energy
minimization. Often we may fix several control parameters and let others vary in some subset
Ω ⊆ Y .

Example (Zeeman’s catastrophe machine (continued)). We continue with Example 8.1. We
choose X,Y as

X = { (p41, p42) } ' R2

Y = { (p11, p12, p21, p22, p31, p32, `14, r24, r34, c24, c34) } ' R11

but only consider the subset Ω ⊆ Y as in

Ω =
{

(0, 0, 2,−1, p31, p32, 1, 1, 1, 0.5, 0.5) : (p31, p32) ∈ R2
}
⊆ Y.

In this setup, we have fixed everything except the coordinates of nodes 3 and 4. We control
the y = (p31, p32) ∈ Ω and solve for the x = (p41, p42) ∈ X. This means that for a given
y = (p31, p32) ∈ Ω we find the coordinates x = (p41, p42) ∈ X that minimize

Q(p41, p42) = 1
4max

{
0,
√

(2− p41)2 + (−1− p42)2 − 1
}

+ 1
4max

{
0,
√

(p31 − p41)2 + (p32 − p42)2 − 1
}

restricted to the set {(x, y) : b(x, y) = 0} ∩ X × Ω. In this case, since B = {14} the
constraints b(x, y) = 0 have only one equation b14(x, y) = 0 that reads

b14(x, y) = (0− p41)2 + (0− p42)2 − 12 = 0.

Definition 8.1. An elastic tensegrity framework is a graph on nodes [n] with edges EV(
([n]

2
)

along with the energy function Q of (8.2), a partition E = B ∪ C of the edge set into rigid
bars and elastic cables, and a partition of variables p, `, r, c of (8.3) into internal and control
parameters X and Ω ⊆ Y . A configuration of an elastic tensegrity framework is a tuple
(x, y) ∈ X × Y satisfying the bar constraints (8.1).

Remark 8.2. We note that [CW96] used the concept of an energy function as motivation
for their definition of prestress stability. Their definition of a tensegrity framework uses
inequalities on edge lengths to distinguish bars from cables and struts. Our definition puts
the energy function at center stage and also allows for a space of control parameters Ω that
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we need in order to define the catastrophe discriminant DΩ ⊆ Ω below.

Definition 8.3. We describe the interaction between an elastic tensegrity framework and
the energy function given in (8.2) with the following definitions.
1. Fix a tuple of control parameters y ∈ Y . An elastic tensegrity framework in configuration

(x, y) is stable if the internal parameters x ∈ X are a strict local minimum of the energy
function Q restricted to the algebraic set {x ∈ X : b(x, y) = 0} of internal parameters
satisfying the bar constraints b(x, y) = 0 of (8.1).

2. For fixed controls y ∈ Y , we collect all strict local minima in the stability set Sy, defined
as all internal parameters x ∈ X such that the corresponding elastic tensegrity framework
(x, y) is stable.

3. The stability correspondence SC is the set of pairs (x, y) ∈ X×Y such that x ∈ Sy. For
a given subset Ω ⊆ Y of controls, we let SCΩ be all (x, y) ∈ X ×Ω ⊆ X × Y such that
x ∈ Sy.

If we are only interested in a subset of control parameters Ω ⊆ Y , these definitions apply
verbatim with Ω replacing Y .

Example (Zeeman’s catastrophe machine (continued)). We continue with Example 8.1.
Figure 8.4 shows Zeeman’s catastrophe machine in a stable configuration. However, for that
specific value of y the stability set Sy contains two points, with the second configuration
shown in grey. Since the constraints b(x, y) = 0 essentially describe a circle, we can also plot
the periodic energy function in Figure 8.4. For the particular value of the controls y ∈ Ω we
chose, there are two local minima, and hence |Sy| = 2.

Figure 8.4: Zeeman machine in a stable configuration with |Sy| = 2. The second stable position of node 4 is
depicted in gray.
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In the following, we focus on stable elastic tensegrity frameworks and the behavior when
control parameters y ∈ Ω ⊆ Y change. For this, consider a smooth path of control parame-
ters

y : [0, 1] ⊆ R→ Ω ⊆ Y (8.4)
t 7→ y(t)

and an initial condition (x(0), y(0)) that is stable according to Definition 8.3. We are
interested in the time evolution of the internal parameters x(t) determined by minimizing
Q constrained by b for the given path y(t) of control parameters. In particular, can we
identify certain regions where small changes in y(t) can cause large changes in the tensegrity
framework? In Section 8.2, we solve an algebraic reformulation of this problem. We define the
catastrophe discriminant DΩ ⊆ Ω ⊆ Y and prove in Theorem 8.11 that as long as y(t) /∈ DΩ
we can always lift a smooth path of controls y(t) to a smooth path of equilibria. We also
show in Theorem 8.13 that stable local minima are preserved along this lift. Additionally, we
relate the algebraic reformulation back to the original problem by showing in Theorem 8.15
the stronger statement that stable local minima are preserved when the smaller, semialgebraic
set CΩ ⊆ DΩ is avoided.

8.2 Algebraic Reformulation
In this section, we transfer questions about the stability of elastic tensegrity frameworks into
an algebraic problem. The motivation is as follows. The computation of Sy is in general a
very hard problem since the points in Sy are all local minima of a constrained optimization
problem. Thus, standard optimization methods are not sufficient since they yield in each
run at most one local minimum and cannot provide guarantees to find all local minima. In
contrast, if we work with systems of polynomial equations we can apply tools from numerical
nonlinear algebra to obtain all solutions. This is discussed in more detail in Section 8.3.

In the following, let ([n], E) be an elastic tensegrity framework with variables p, `, r, c
from (8.3) partitioned into the internal parameters x ∈ X ' Cm1 and the control parameters
y ∈ Y ' Cm2 . Compared to the previous section we now work over the complex numbers.
Let Ω be an affine subvariety of the control parameters Y we wish to manipulate with
controls y(t) ∈ Ω. Why an affine subvariety? This allows us, among other things, to
consider movement of a node constrained to motion in a sphere, perhaps determined by a
rigid bar. We denote by ΩR the real part of Ω and assume that the dimension of ΩR and Ω
coincide. We introduce variables δij for ij ∈ C to eliminate the square roots in the potential
energies qij . For ij ∈ E, let

gij =
{
`2ij −

∑
k∈[d](pik − pjk)2 if ij ∈ B

δ2
ij −

∑
k∈[d](pik − pjk)2 if ij ∈ C

and denote by g(x, δ, y) : X ×C|C| × Y → C|E| the polynomial systems whose component-
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wise entries are the gij . Furthermore, denote by Gy the zero set of g for a fixed y ∈ Y

Gy := {(x, δ) ∈ X × C|C| | g(x, δ, y) = 0} .

For ij ∈ C, let
q̃ij = 1

2cij(δij − rij)
2 with Q̃y =

∑
ij∈C

q̃ij

an algebraic energy function Q̃y. The subscript emphasizes possible dependency on y ∈ Y .
To study the stability set Sy, we look at the critical points of Q̃y(x, δ) subject to (x, δ) ∈

Gy. A point (x, δ) ∈ Gy is a critical point of the energy function Q̃ if the gradient ∇Q̃ is
orthogonal to the tangent space of Gy at (x, δ). If the variety Gy is a complete intersection,
i.e., the codimension of Gy equals |E|, then we can directly apply the technique of Lagrange
multipliers to compute the critical points. In the following, we assume for ease of exposition
that this is the case. However, this is not a critical assumption and the results can be extended
to non-complete intersections by using standard numerical nonlinear algebra techniques for
randomizing overdetermined systems (see [SW05, Chapter 13]). We introduce the variables
λij for ij ∈ E to act as Lagrange multipliers and let

Ly(x, δ, λ) = Q̃y +
∑
ij∈E

λijgij(x, δ, y) . (8.5)

Definition 8.4. Define the polynomial map dLy by letting its component functions be the
various partial derivatives of Ly with respect to x, δ and λ.

dLy := ∂Ly
∂(x, δ, λ) : X × C|C| × C|E| → X × C|C| × C|E|, (x, δ, λ, y) 7→ dLy

(
x, δ, λ

)
.

Let its zero set be the affine algebraic variety denoted Ly := dL−1
y (0) ⊆ X × C|C| × C|E|.

Similarly, we define

LC := {(x, δ, λ, y) | (x, δ, λ) ∈ Ly} ⊆ X × C|C| × C|E| × Ω

and let LCreg denote its open, dense subset of smooth points, LCsing its singular locus, and
LCR its real part.

Proposition 8.5. If the dimension of Ω and LC coincide, then for almost all y ∈ Ω the
variety Ly is finite and has the same cardinality N . For all y ∈ Ω the variety Ly contains at
most N isolated points.

Proof. Since the projection π : LC → Ω is dominant and the dimension of Ω and LC
coincide, it follows that the fiber Ly, y ∈ Ω is generically finite. The result then follows from
Theorem 3.2.

Definition 8.6. Given Ω ⊆ Y , we define the equilibrium degree of a framework to be the
cardinality of Ly for general y ∈ Y . Proposition 8.5 implies that the equilibrium degree is
well-defined.
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Example (Zeeman’s catastrophe machine (continued)). We continue our running example
with edges E = {14, 24, 34} partitioned as B = {14} and C = {24, 34}. Recall from
Example 8.1 we had Ω =

{
(0, 0, 2,−1, p31, p32, 1, 1, 1, 0.5, 0.5) : (p31, p32) ∈ R2} ⊆ Y ,

and X = { (p41, p42) } ' R2. We write x = (p41, p42). The polynomials defining our
constraints are

g(x, δ, y) =

 12 − (0− p41)2 − (0− p42)2

δ2
24 − (2− p41)2 − (−1− p42)2

δ2
34 − (p31 − p41)2 − (p32 − p42)2

 =

 0
0
0

 .
We obtain the Lagrangian of (8.5) as

L(p31,p32) = 1
4(δ24 − 1)2 + 1

4(δ34 − 1)2 +
(
1− p41

2 − p42
2
)
λ14+(

δ2
24 − (2− p41)2 − (−1− p42)2

)
λ24 +

(
δ2

34 − (p31 − p41)2 − (p32 − p42)2
)
λ34.

The polynomial system dLy is given by

dL(p31,p32)(x, δ, λ) =



−2λ14p41 − 2λ24(2− p41)− 2λ34(p31 − p41)
−2λ14p42 − 2λ24(−1− p42)− 2λ34(p32 − p42)

1
2(δ24 − 1) + 2 δ24λ24
1
2(δ34 − 1) + 2 δ34λ34

1− p41
2 − p42

2

δ2
24 − (2− p41)2 − (−1− p42)2

δ2
34 − (p31 − p41)2 − (p32 − p42)2


.

The equilibrium degree for this framework is 16. This means that for generic (p31, p32) ∈ Ω
the equations dL(p31,p32)(x, δ, λ) = 0 have 16 isolated solutions.

We have particular interest in those parameter values y ∈ Ω where the number of reg-
ular isolated solutions |Ly| of dLy(x, δ, λ) = 0 is less than the equilibrium degree of the
framework, since for those parameters local minima can disappear.
Definition 8.7. Define the catastrophe discriminant DΩ ⊆ Ω as the Zariski closure of the
set of critical values of the projection map

π : LC → Ω, z = (x, δ, λ, y) 7→ y = π(z)

where the critical values are defined as those π(z) ∈ Ω such that either z ∈ LCsing or there
exists a tangent vector v ∈ TzLC in the kernel of dπz. The catastrophe discriminant is an
algebraic subvariety of Ω of codimension 1.
Definition 8.8. The catastrophe degree of an elastic tensegrity framework is the degree of
the algebraic variety DΩ.
Example (Zeeman’s catastrophe machine (continued)). We continue with Example 8.2.
Refer back to Figure 8.2 which shows the catastrophe discriminant DΩ ⊆ Ω for Zeeman’s
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machine with controls Ω defined in Example 8.1. Note that DΩ does not depend on y ∈ Ω
but just on the choice of X and Ω ⊆ Y itself. Here, DΩ is an algebraic plane curve of
degree 72. That is, the catastrophe degree is 72. Over the finite field Z65521 the catastrophe
discriminant DΩ is the zero set of the 2701-term polynomial

p72
31 + 13109 p71

31p32 − 13055 p70
31p

2
32 + 10676 p69

31p
3
32 + 7407 p68

31p
4
32 + 4476 p67

31p
5
32+

31981 p66
31p

6
32 + 12338 p65

31p
7
32 − 8796 p64

31p
8
32 + . . .− 709 p31 − 32406 p32 + 540.

Figure 8.2 also shows the catastrophe set CΩ that we define below. As we move controls
y(t) ∈ Ω, the set CΩ detects changes in the number of local minima, and hence possible
catastrophe.

Definition 8.9. We define

CΩ := {y ∈ DΩ ∩ ΩR | there exists (x, δ, λ, y) ∈ π−1(y) with δ ≥ 0 } ⊆ DΩ ∩ ΩR

to be the catastrophe set. This is the part of the catastrophe discriminant DΩ that relates
to the original problem. We note that the catastrophe set CΩ partitions ΩR into cells within
which the number of strict local minima is constant. Figure 8.2 depicts the number |Sy| of
stable local minima for a typical point y in each connected component of the complement
ΩR \CΩ. Look ahead to Figure 8.6 for another illustration of this phenomenon for the elastic
four-bar linkage discussed in Section 8.4.

Proposition 8.10. The catastrophe set CΩ is a semialgebraic set.

Proof. From the definition of CΩ follows that it is the projection of a semialgebraic set that
by the Tarski-Seidenberg principle is again a semialgebraic set.

We now begin to prove theorems justifying our interest inDΩ and CΩ. Theorem 8.11 shows
that if a smooth path of controls y(t) avoids DΩ, then there is always a corresponding smooth
path z(t) = (x, δ, λ, y) ∈ LC. We will combine this with Theorem 8.13 and Proposition 8.14
to prove Theorem 8.15, which says that controls y(t) avoiding the semialgebraic catastrophe
set CΩ always correspond to stable local minima, and thus avoid catastrophes where local
minima disappear discontinuously. This is called catastrophe since a real-world system would
be forced to move rapidly towards the nearest remaining local minima, and since without
knowledge of CΩ this sudden change in behavior would be very surprising (loss of equilibrium).
For the remainder of this section, we aim to prove Theorems 8.11, 8.13, and 8.15.

Theorem 8.11. Let y : [0, 1]→ ΩR with [0, 1] ⊆ R be a smooth path of control parameters
with initial conditions y(0) ∈ ΩR and z(0) ∈ LCreg such that π(z(0)) = y(0) and the
expected dimension dim(Tz(0)LC) = dim(Ty(0)Ω) holds. If y(t) /∈ DΩ for all t, then there
exists a smooth lifting z : [0, 1]→ LC with π(z(t)) = y(t) for all t.

Proof. Since dim(Tz(0)LC) = dim(Ty(0)Ω) and since y(0) /∈ DΩ, we know that the differen-
tial dπz(0) is an isomorphism. By the inverse function theorem, π is a local diffeomorphism
at z(0). Hence there is some open neighborhood U of y(0) in Ω mapped diffeomorphically to
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some open neighborhood of z(0) in LC. Therefore we can define z(t) = π|−1
U (y(t)) for all t

such that y(t) ∈ U . Since y(t) avoids DΩ, we know that π|−1
U (y(t)) avoids the singular locus

of LC so that the dimension conditions dim(Tz(t)LC) = dim(Ty(t)Ω) continue to hold for all
t. Since y(t) avoids DΩ, we also know that dπz(t) will continue to have full rank, since none
of the dim(Tz(t)LC) many tangent vectors are in the kernel. This shows we can continue
defining z(t) by the local diffeomorphisms that exist by the inverse function theorem. Hence
there exists a lifting z : [0, 1]→ LC with π(z(t)) = y(t) for all t.

We now want to show that avoiding DΩ preserves the stability of the corresponding elastic
tensegrity framework. For this, we first need a precise definition of what it means to be a
local minimum of Q̃y(x, δ) subject to the constraint Gy.

Definition 8.12. Let d2Q̃ and d2gij be the Hessian matrices of Q̃y and gij respectively, when
viewed as functions of the variables x and δ. Let dg denote the Jacobian of the constraints
g viewed again as functions of the variables x and δ. We say that z = (x, δ, λ, y) ∈ LCR is a
strict local minimum for the energy Q̃y subject to constraints g if (x, δ) satisfy the sufficient
condition that the projected Hessian

V T

d2Q̃+
∑
ij∈E

λijd
2gij

V (8.6)

is positive definite. Here V is a real basis of the null space of dg. The term projected refers
to the fact that the Hessian is projected onto the tangent space of the constraints g = 0 at
(x, δ). See, e.g., [GMW82, page 81].

The next theorem shows that controls y(t) avoiding DΩ preserve the stability of the
corresponding elastic tensegrity framework.

Theorem 8.13. Let y(t) be a smooth path of control parameters with initial conditions as in
Theorem 8.11. Furthermore, if the initial condition z(0) is a strict local minimum according
to Definition 8.12, then all the lifts z(t) are strict local minima as well.

Proof. Let V be a matrix whose columns form a basis for Null(dg), the tangent space of
the constraint variety. Then Null(V T ) = Col(dgT ) is the normal space. Set

H :=

d2Q̃+
∑
ij∈E

λijd
2gij

 .
As the controls y(t) vary smoothly, by Theorem 8.11 so does the point z(t) ∈ LCreg.
Therefore the eigenvalues of the symmetric matrix V THV also vary smoothly. Since z(0)
began as a strict local minimum, V THV began with all positive eigenvalues. Suppose that at
some z(t) there appears a zero eigenvalue of V THV . Then there is a null vector V THV u =
0. Placing parentheses V T (HV u) = 0 we see that HV u is in the normal space and by
construction V u ∈ the tangent space. But then there must exist a linear combination w

99



writing HV u in terms of the columns of dgT , and hence (V u,−w) ∈ Null(d2L) where

d2L =
[
H dgT

dg 0

]

is the Hessian of the Lagrangian Ly of (8.5). Note that the null vector (V u,−w) of d2L
extends to a tangent vector of Tz(t)LC by appending zeros in the Ω components. This
tangent vector clearly projects to zero by dπz(t). But this means that y(t) ∈ DΩ, completing
the proof.

We now discuss how our algebraic reformulation relates back to the original problem.
In our algebraic reformulation, we removed the square roots by introducing the additional
variables δij for ij ∈ C. In the following proposition, we assume that all elastic cables are in
tension since such systems are only structurally stable when self-stress is induced.

Proposition 8.14. Consider a framework in stable configuration (x, y) ∈ SC of Definition 8.3
with y /∈ CΩ that also satisfies √∑

k∈[d]
(pik − pjk)2 − rij > 0 (8.7)

for every ij ∈ C so that all elastic cables are in tension. Then there exists δ ∈ R|C|≥0 and
λ ∈ R|E| such that (x, δ, λ, y) ∈ LCreg.

Proof. Let Vb := {(x, y) : b(x, y) = 0} and Vg := {(x, δ, y) : g(x, δ, y) = 0}. Now consider
the map s : X×Ω→ R|C| defined by coordinate functions sij(x, y) :=

√∑
k∈[d](pik − pjk)2.

Restricting this map to Vb we have its graph

{ (x, s(x, y), y) : (x, y) ∈ Vb} ⊆ X × R|C|≥0 × Ω

which provides a local diffeomorphism between Vb and Vg near any point (x, y) ∈ Vb satisfying
(8.7). Observe that, by construction, Q̃y takes values on the image points equal to the values
taken by Q on the domain Vb, provided condition (8.7) holds. Therefore, if (x, y) ∈ Vb is a
strict local minimum of Q on Vb, then (x, s(x, y), y) ∈ Vg is a strict local minimum of Q̃y
on Vg. Also, since we assume y /∈ CΩ we conclude that (x, s(x, y), y) ∈ Vg is a non-singular
point of Vg. Hence, by the Lagrange multipliers condition for local extrema we know that
there exists λ such that (x, s(x, y), λ, y) ∈ LCreg, concluding the proof.

Finally, we are able to prove that the stability of the corresponding elastic tensegrity
framework is preserved by avoiding only CΩ ⊆ Ω.

Theorem 8.15. Let y : [0, 1]→ Ω with [0, 1] ⊆ R be a smooth path of control parameters
with initial conditions y(0) ∈ Ω and (x(0), y(0)) ∈ SC satisfying the conditions of Proposition
8.14. If y(t) /∈ CΩ and condition (8.7) remains satisfied for all t ∈ [0, 1], then there exists
a smooth lifting z : [0, 1] → LC with z(t) = (x(t), δ(t), λ(t), y(t)) for all t such that
(x(t), y(t)) ∈ SC.
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Proof. By Proposition 8.14, if we have (x(0), y(0)) ∈ SC satisfying (8.7), then there exist δ, λ
which we call δ(0), λ(0) such that (x(0), δ(0), λ(0), y(0)) ∈ LCreg. But then, by Theorems
8.11 and 8.13 we have lifts z(t) = (x(t), δ(t), λ(t), y(t)) satisfying Definition 8.12 as strict
local minima for Q̃y on Vg. Using the graphs of the maps s(x(t), y(t)) as in the proof of
Proposition 8.14, we have local diffeomorphisms for every t such that strict local minima of
Q on Vb are mapped to strict local minima of Q̃y on Vg, since (8.7) is satisfied for all t. But
then each (x(t), y(t)) ∈ SC as required.

8.3 Computations Using Numerical Nonlinear Algebra
In this section, we use the algebraic reformulation developed in the previous section to
describe numerical nonlinear algebra routines that can be used to answer the following three
computational problems:
1. Given γ ∈ ΩR, compute Sγ .
2. Given an algebraic path y(t) : [0, 1] → ΩR ⊆ Y and an initial configuration x0 ∈ Sy(0),

compute the path points γ ⊆ y([0, 1]) where a catastrophe might occur (a local minimum
disappears).

3. Given a control set Ω, compute the catastrophe set CΩ.
We start with the first question. Recall that dLy is a polynomial system. We can compute

all isolated solutions of a polynomial system using the methods described in Chapter 3. For
our computations, we use HomotopyContinuation.jl. To compute Sγ for a given γ ∈ ΩR,
we first solve dLγ(x, δ, λ) = 0. This results in finitely many complex solutions Lγ . Of these
complex solutions, we then select those solutions whose components are real-valued and
then further select those real-valued solutions where the projected Hessian defined in (8.6)
is positive definite. Note that computing solutions to dLγ(x, δ, λ) = 0 usually requires that
we track many more paths than the equilibrium degree of Lγ . If the goal is to compute Sy
for many different y ∈ ΩR, it is advantageous to use a parameter homotopy as outlined in
Section 3.3. There, the idea is to first compute Ly0 for a general (complex) y0 ∈ Ω and
then to use the parameter homotopy H(z, t) = dLty0+(1−t)y(z) to efficiently compute Ly.
The parameter homotopy approach allows us to track only the minimal number of paths,
equilibrium degree of Lγ many, to still guarantee that Sy is computed correctly.

Consider the second question where we have an algebraic path y(t) : [0, 1] → ΩR ⊆ Y
and an initial configuration x0 ∈ Sy(0). We want to compute the path points γ ⊆ y([0, 1])
where a catastrophe might occur. From the results in Section 8.2, it follows that we want
to compute the intersection of CΩ and y([0, 1]). For this, we first compute the intersection
DΩ ∩ α where α ⊆ Ω is an algebraic curve containing y([0, 1]). For simplicity, we assume
that we have the general situation that α 6⊆ DΩ. The catastrophe discriminant DΩ is given
by π(H−1

Ω (0))) with π from Definition 8.7 and

HΩ(x, δ, λ, y) =
[

dLy(x, δ, λ)
det d2Ly(x, δ, λ)

]
.
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Since the evaluation of a determinant is numerically unstable, it is better to instead use
the formulation that there exists a v ∈ Pn such that d2Ly(x, δ, λ) · v = 0. Consider the
collection {HΩ, π, α,W} where HΩ and π are the polynomial maps defined above and the
set W = π−1(α) ∩ H−1

Ω (0) contains finitely many solution points. In the case that α is
a line, this is a pseudo-witness set as described in Section 3.7. This allows us to perform
computations on DΩ without knowing its defining polynomials explicitly. Since W is the
zero set of a polynomial system, it can again be computed by using homotopy continuation
techniques. If α is a line, then the cardinality ofW is the catastrophe degree of the tensegrity
framework. To compute CΩ ∩ y([0, 1]) given W, we have to select from (x, δ, λ, γ) ∈ W all
those solutions that have real-valued coordinates, δ > 0, and γ ∈ y([0, 1]) ⊆ α.

We move to the third question and discuss the computation of the catastrophe set CΩ.
This is more involved since CΩ is a positive-dimensional set and we have to decide what
“compute” means in our context. Since CΩ is a semialgebraic set, it can theoretically be
described by a finite list of polynomial equations and inequalities. However, computing the
describing polynomials is a very challenging computational problem since it requires extensive
Gröbner bases computations. We were able to compute the polynomial defining DΩ in
Example 8.2, but only over a finite field, and larger examples will likely fail to terminate.
Instead, we opt to obtain a sufficiently dense point sample of CΩ. The idea is to apply
the previously described technique to compute repeatedly the intersection of CΩ and a real
line ` ⊆ ΩR. To proceed, we first compute a pseudo-witness set {HΩ, π, π

−1(`0),W0}
for a general (complex) line `0 ⊆ Ω and then we can compute the pseudo witness set
{HΩ, π, π

−1(`),W} by utilizing a parameter homotopy. As discussed above, this is much
more efficient for the repeated solution of our equations. Note that even if the real lines
` ⊆ ΩR are sampled uniformly, this does not guarantee that the obtained sample points
converge to a uniform sample of CΩ. If uniform sampling is of interest, the procedure can
be augmented with a rejection step as described in [BM20]. Figure 8.2 depicts the point
samples obtained for Zeeman’s catastrophe machine using this method, while Figure 8.6
depicts those obtained for the elastic four-bar framework of Section 8.4.

8.4 Example: Elastic Four-Bar Framework
We demonstrate the developed techniques in another example. For this, we consider a planar
four-bar linkage that is constructed from four bars connected in a loop by four rotating joints
where one link of the chain is fixed. The resulting mechanism has one degree of freedom.
Four-bar linkages are extensively studied in mechanics as well as numerical algebraic geometry
[WS11]. Here, we extend a four-bar linkage to an elastic tensegrity framework by introducing
two nodes that are attached to the two non-fixed joints by elastic cables. Formally, we
introduces six nodes with coordinates p1, . . . , p6 ∈ R2, bars B = {12, 23, 34, 41} and elastic
cables C = {35, 46}. See Figure 8.5 for an illustration of this basic setup.
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Figure 8.5: Setup of a four-bar elastic tensegrity framework.

The zero set of the bar constraints bij , ij ∈ B, is a curve of degree 6 that can be
parameterized by the plane curve traced out by the motion of the midpoint (p3 + p4)/2. In
kinematics terminology, the midpoint is a coupler point and the plane curve is called the
coupler curve of the mechanism.

The idea is to fix nodes 1, 2 and 5, and to control node 6. For our model, this means
choosing X = {(p31, p32, p41, p42)} ' R4 as internal parameters and Ω = {(p61, p62)} ' R2

as control parameters. Furthermore, we fix nodes p1 = (−1, 0), p2 = (1, 0), p5 = (4, 3), bar
lengths l23 = 3, l34 = 1, l14 = 1.5, resting lengths r35 = r46 = 0.1 and elasticities c35 = 1,
c46 = 2.

In this setup, the framework has an equilibrium degree of 64. The resulting catastrophe
discriminant DΩ is a curve of degree 288. DΩ and the catastrophe set CΩ are depicted in
Figure 8.6. The typical sizes of the stability set Sγ , γ ∈ Ω, are 2, 3, and 4.

Figure 8.6: The catastrophe discriminant (left) and catastrophe set (right) of the elastic four bar framework.
The cardinality of the stability set for points in each chamber of the complement of the catastrophe set is
shown in the upper right corner.

Finally, we also want to give in Figure 8.7 another concrete example of a catastrophe.
There, the control node 5 is depicted by a cross and it is dragged in a straight line between
its position in the left figure and its position in the right figure. When the control node
crosses the catastrophe set CΩ, its previously stable position disappears from Sy, and the
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framework “jumps” to a new position. Again, without knowledge of CΩ these catastrophes
are extremely surprising. With knowledge of CΩ and Theorem 8.15 they become predictable.

Figure 8.7: Left: The elastic four bar framework in a stable configuration. Right: Configuration of the
framework after crossing the catastrophe set. The gray dashed line is the coupler curve of the four-bar
linkage traced out by the coupler point defined as the midpoint of the bar connecting nodes 2 and 3. The
coupler curve allows parameterizing all possible four bar positions. The catastrophe set CΩ is depicted in red.
At the bottom are the energy landscapes along the coupler curve with the current position depicted in green.

8.5 Conclusion and Future Work
This chapter described elastic tensegrity frameworks as a large family of simple models
based on Hooke’s law and energy minimization. For this family, we showed how to explicitly
calculate and track all stable equilibrium positions of a given framework. More importantly,
we showed how to calculate the catastrophe set CΩ by using pseudo-witness sets to encode a
superset DΩ ⊇ CΩ. To do this, we reformulated the problem algebraically to take advantage
of tools in numerical nonlinear algebra. Knowing the catastrophe set provides extremely
useful information since Theorem 8.15 shows that paths of control parameters avoiding CΩ
will also avoid discontinuous loss of equilibrium, and hence avoid surprising large-scale shape
changes.

In our two illustrative examples, we chose the controls Ω as a two-dimensional space
overlaid with the configuration itself. These choices were made to demonstrate the ideas.
However, the calculation and tracking of all stable local minima by parameter homotopy
and the encoding of DΩ ⊇ CΩ by pseudo-witness sets applies much more generally. The
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control set Ω can be chosen in any way, and all the same methods apply, even if there
are no easy visualizations for the controls desired. Therefore, for more complicated sets of
control parameters Ω it is of interest to develop more efficient local sampling techniques
based on Monte Carlo methods [ZHCG18], perhaps only sampling CΩ locally near the initial
configuration (x(0), y(0)) or locally near the intended path y([0, 1]). For example, it may be
enough to know only the points of CΩ nearest to a given initial or current position y(t).

We would also like to mention recent work [BHM+20] that details a sampling scheme
whose goal is to learn the real discriminant of a parametrized polynomial system, as well
as the number of real solutions on each connected component. They combine homotopy
continuation methods with k-nearest neighbors and deep learning techniques. For elastic
tensegrity frameworks, these techniques might be used to learn DΩ ∩ ΩR.

Finally, we discuss the potential of our results for use in mechanobiology [IWS14], where
scientists have frequently and successfully used tensegrity to model cell mechanics. Even
small and simple elastic tensegrity frameworks (e.g. with 6 or 12 rigid bars, plus more
cables) have been used to explain and predict experimental results observed in actual cells
and living tissue [DSLB+11,VVB00,CS03,WTNC+02]. However, the tensegrity paradigm is
not universally accepted in mechanobiology, in part because it is viewed as a static theory,
unable to explain dynamic, time-dependent phenomena [IWS14, see pages 13-16]. It is
here where catastrophe sets could play a role. We believe qualitative phenomena observed in
actual experiments could be predicted or explained by elastic tensegrity frameworks. Knowing
the catastrophe set for a simple tensegrity model with a biology-informed choice of Ω would
give catastrophe predictions that could then be tested experimentally.
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9 HomotopyContinuation.jl

In this chapter, we present the software package HomotopyContinuation.jl1 for the nu-
merical solution of polynomial systems using methods from numerical nonlinear algebra. The
package is written in the programming language Julia [BEKS17]. It has been developed by
the author and Paul Breiding since late 2017. The author is responsible for the majority of
the development and design of the software. In addition to the software, we maintain the
website JuliaHomotopyContinuation.org containing technical documentation, tutorials,
and a wide range of examples. An early version of HomotopyContinuation.jl (abbreviated
as HC in the following) was described in the article [BT18].

Figure 9.1: The logo of HomotopyContinuation.jl.

There are several actively maintained software packages implementing polynomial homo-
topy continuation methods besides HC: Bertini [BHSW], HOM4-PS-2/3 [LLT08, CLL14],
NAG4M2 [Ley11] and PHCpack [Ver99]. All packages have different capabilities, user inter-
faces and made (implicitly or explicitly) different design decisions. This results in packages
with different strengths and weaknesses. Here, we describe the choices made by HC.

The primary goal in the development of HC has been to create a software package that
allows engineers, researchers, and scientists to solve hard problems in nonlinear algebra
without the need to first become an expert in numerical nonlinear algebra. We are positive
that we achieved this goal due to the wide range of research results already obtained using
HC. The impact of HC is discussed in more detail in Section 9.3. The quick adoption of HC
is the result of its ease of use combined with the support for the various solving strategies
described in Chapter 3. The functionality of HC is demonstrated in Section 9.1 and we
describe various noteworthy design and implementation details of HC in Section 9.2.

9.1 Functionality
In this section, we demonstrate the functionality of HC as of version 2.3.3 released in January
2021. We structure this section by the typical steps necessary to solve a problem. For this,

1The package is free and open source. The source code is maintained at https://github.com/
JuliaHomotopyContinuation/HomotopyContinuation.jl and permanently archived at https://doi.
org/10.5281/zenodo.4371499.
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we first have to take the mathematical formulation of our problem and represent it in a way
understandable to the software. Then, we can compute all isolated solutions of our problem
with one of the techniques described in Chapter 3. Finally, we certify all regular isolated
solutions to our problem using the method described in Chapter 5.

To illustrate this workflow, we consider the Euclidean distance degree problem [DHO+16]
for a plane curve X = V(f) ⊆ C2: Given a point u ∈ R2, what is the point on X with
minimal Euclidean distance to u? To answer this, we compute all critical points of the
squared distance function du : X → R, x = (x1, x2) 7→ (x1 − u1)2 + (x2 − u2)2. The
number of critical points for a general point u ∈ R2 is the Euclidean distance degree of X.
A point x∗ is a critical point of du if and only if x∗ − u is in the normal space of X at x∗.
Thus, the critical points of du satisfy the equations

(x− u)− λ∇f(x) = 0
f(x) = 0 (9.1)

where λ is an additional variable.
In the following, we solve the Euclidean distance degree problem for the plane curve given

by the zero set of f = (x4
1 +x4

2− 1)(x2
1 +x2

2− 2) +x5
1x2 and the point u0 = (−0.32,−0.1).

The zero set of f and the point u0 are depicted in Figure 9.2.

Figure 9.2: The zero set of f in blue and the point u0 in red.

9.1.1 Problem formulation

HC provides an embedded domain-specific language called ModelKit. We discuss ModelKit
in more detail in Section 9.2.1. ModelKit allows us to formulate problem (9.1) in a very
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convenient way. Here is the necessary code.� �
1 using HomotopyContinuation
2 @var x[1:2] λ u[1:2]
3 f = (x[1]ˆ4 + x[2]ˆ4 - 1) * (x[1]ˆ2 + x[2]ˆ2 - 2) + x[1]ˆ5 * x[2]
4 eqs = [(x - u) - λ * differentiate(f, x); f]
5 system = System(eqs, variables = [x;λ], parameters = u)� �
The first line loads the package. In line 2, the variables x = (x1, x2), λ, and u = (u1, u2)
are declared. The compact syntax x[1:2] allows us to easily construct a vector of variables.
In line 3, we define our polynomial f . In line 4, we define our equations in the same way
as (9.1). Finally, in line 5, we construct from the equations a proper system that we call
system. In the system construction, we declare which variables we consider as parameters,
and we also fix a variable order. The description of the constructed system is shown below.� �

System of length 3
3 variables: x1, x2, λ
2 parameters: u1, u2

-u1 + x1 - λ*(5*x2*x1ˆ4 + 2*x1*(-1 + x2ˆ4 + x1ˆ4) + 4*x1ˆ3*(-2 + x2ˆ2 + x1ˆ2))
-u2 + x2 - λ*(2*x2*(-1 + x2ˆ4 + x1ˆ4) + 4*x2ˆ3*(-2 + x2ˆ2 + x1ˆ2) + x1ˆ5)
x2*x1ˆ5 + (-1 + x2ˆ4 + x1ˆ4)*(-2 + x2ˆ2 + x1ˆ2)� �

The description reveals one of the distinct properties of ModelKit. The polynomials are not
represented in a monomial basis. Instead, the original symbolic definition of f is preserved and
the differentiation of f was performed by directly applying the chain rule without expanding
any expressions. For many applied problems, this approach gives us a much more efficient
and numerically stable evaluation of the system. Before any numerical computations are
performed, the symbolic expression is transformed into a straight-line program. We discuss
this transformation in Section 9.2. If desired, a representation in the monomial basis is also
possible by using the expand function on system.

Similarly, it is also possible to declare a custom homotopy. This expects, in addition to
polynomials and variables, a dedicated continuation parameter. Moreover, the expression
passed to System can also represent a system of rational functions. Not all features of HC
work with rational functions but, e.g, performing a parameter homotopy and solving via the
monodromy method works.

9.1.2 Solving

The central function in HC is solve. To illustrate it, we solve problem (9.1) for the parameter
value u0 = (−0.32,−0.1).� �

u0 = [-0.32, -0.1]
@time result = solve(sys; target_parameters = u0)� �� �
0.009087 seconds (43.40 k allocations: 1.727 MiB)

Result with 36 solutions
========================
* 36 paths tracked
* 36 non-singular solutions (8 real)
* random_seed: 0x21c2b5ca
* start_system: :polyhedral� �
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Here, HC used a polyhedral homotopy, described in Section 3.4.2, with 36 paths to track. We
used the @time macro to report the computation time. We find 36 non-singular solutions
with 8 determined as real (based on a heuristic). See Figure 9.3 for a visualization of the 8
real solutions.

Figure 9.3: The zero set of f in blue and the point u0 in red as well as all 8 real critical points of the Euclidean
distance function.

It is also possible to solve the problem with a total degree homotopy as described in
Section 3.4.1.� �

@time solve(sys; target_parameters = u0, start_system = :total_degree)� �� �
0.018335 seconds (281.34 k allocations: 7.178 MiB)

Result with 36 solutions
========================
* 216 paths tracked
* 36 non-singular solutions (8 real)
* random_seed: 0x858a8573
* start_system: :total_degree� �

We obtain the same 36 solutions but this time it was necessary to track 216 paths. In
general, solve either performs a parameter homotopy or uses one of the general start systems
described in Section 3.4. The behavior depends on the arguments with which it is called.
All solving methods are automatically parallelized by using multiple threads.

In the previous two cases, we solved the problem directly for our parameter value u0. If the
problem should be solved repeatedly for different parameter values u ∈ C2, it is more efficient
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to perform for each parameter value a parameter homotopy starting from a general v ∈ C2.
For this, we have to compute the 36 solutions corresponding to a general parameter value.
We use the monodromy method implementation described in Section 3.5 for this.� �

monodromy_result = monodromy_solve(sys)� �� �
MonodromyResult
===============
* return_code: :heuristic_stop
* 36 solutions
* 432 tracked loops
* random_seed: 0x4e3c389d� �

We also find 36 solutions, but this time for an automatically chosen general parameter value
v ∈ C2. HC automatically computed a start pair (y, v) ∈ C3×C2 by performing the random
search procedure described in Algorithm 3.10 in Section 3.5. Since we did not provide the
correct number of solutions, the computation stopped based on a heuristic. In this case, the
computation stopped after no new solutions were found for k loops where the default value
is k = 5. The result shows that we needed to track 432 times around the generated loops
until the computation stopped. This makes the computation, in this case, substantially more
expensive than the previous methods. But for larger problems, the monodromy method is
often the better choice.

To verify that the monodromy method didn’t stop too early, we can use the trace test
described in Section 3.6.2 by calling the function verify_solution_completeness.� �

verify_solution_completeness(system, monodromy_result)� �� �
[ Info: Compute additional witnesses for completeness check...
| Info: MonodromyResult
| * return_code: :heuristic_stop
| * 36 solutions
| * 288 tracked loops
| * random_seed: 0x3a0a7ce1
[ Info: Computed 36 additional witnesses
[ Info: Compute trace using two parameter homotopies...
[ Info: Norm of trace: 1.2555979342223942 e-17
true� �
To obtain the solutions of (9.1) for the parameter value u = u0, we perform a parameter

homotopy using the solutions from the previous monodromy computation.� �
@time result = solve(system, solutions(monodromy_result);
start_parameters = parameters(monodromy_result);
target_parameters = u0)� �� �
0.002728 seconds (10.52 k allocations: 482.289 KiB)

Result with 36 solutions
========================
* 36 paths tracked
* 36 non-singular solutions (8 real)
* random_seed: 0x857740a9� �
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Although for the polyhedral and the parameter homotopy approach the number of paths
tracked is the same, the parameter homotopy is around three times faster since we do not
need to solve a start system.

9.1.3 Certification

Our previous computations consistently found 36 solutions for the system (9.1) with the pa-
rameter value u = u0 and classified eight of them as real solutions. By using the certification
technique developed in Chapter 5 we can make this rigorous.� �

@time certificate = certify(system, result, target_parameters = u0)� �� �
0.003479 seconds (11.09 k allocations: 609.820 KiB)

CertificationResult
===================
* 36 solution candidates given
* 36 certified solution intervals (8 real, 28 complex)
* 36 distinct certified solution intervals (8 real, 28 complex)� �

We obtain a rigorous certificate that the system (9.1) has for u0 at least 36 distinct solutions
and that 8 of them are real. Recall from Section 3.4.2 that the mixed volume of a polynomial
system is an upper bound for the number of its solutions. Since the mixed volume of the
system (9.1) is 36, we have a hard mathematical proof that the system has 36 solutions over
the complex numbers and 8 over the real numbers.

Additionally, we can use the obtained strong interval approximate zeros (Definition 5.8)
corresponding to the real solutions to show that there is a unique closest point to u0 on our
plane curve. For this, we compute for each real solution interval the Euclidean distance to
the point u0 using interval arithmetic.� �

real_certificates = filter(is_real, certificates(certificate))
S = map(c -> real.(certified_solution_interval(c)[1:2]), real_certificates)
distances = map(s -> sqrt(sum((u0 .- s).ˆ2)), S)� �� �
8-element Array{Arblib.Arb,1}:
[0.684877553854 +/- 4.05e-13]
[0.898148085636 +/- 1.88e-13]
[1.28842142248 +/- 4.43e-12]
[2.13910089335 +/- 6.79e-12]
[1.274017312810 +/- 7.05e-13]
[1.63992496605 +/- 4.06e-12]
[1.42513399923 +/- 3.12e-12]
[1.70785729922 +/- 4.23e-12]� �

From the computed distances, we see that the unique closest point is guaranteed to be
contained in the first certified real solution interval.� �

S[1]� �� �
2-element Array{Arblib.Arb,1}:
[-0.988531743089 +/- 5.93e-13]
[0.048736586807 +/- 6.33e-13]� �

This result also matches our intuition from looking at Figure 9.3.
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9.1.4 Witness Sets

So far, we only computed the isolated zeros of a polynomial system. In the case that the
solution set is positive-dimensional, we use a witness set to encode it. Recall the definition
of a witness from Section 3.7.

To illustrate witness sets in HC, we consider the twisted cubic, a curve C ⊂ P3, described
by the following system.� �

@var x y z w
twisted_cubic = System([x * z - yˆ2, y*w - zˆ2, x*w - y * z])� �� �
System of length 3
4 variables: w, x, y, z

x*z - yˆ2
w*y - zˆ2
w*x - y*z� �

To compute a witness set for C, we need to intersect it with a general linear space of codi-
mension one and compute all isolated solutions of this intersection. This can be accomplished
using the witness_set function. It is necessary to provide the function with information
about the dimension of the component for which we want to compute a witness set.� �

W = witness_set(twisted_cubic; dim = 1)� �� �
Witness set for dimension 1 of degree 3� �

The result is a witness for C containing 3 isolated points since the degree of C is 3. To test
whether the witness set is complete, we can run a trace test as described in Section 3.6.2.� �

trace_test(W)� �� �
1.1079535712329777 e-16� �

Since the result is almost zero, we are certain that we have a complete witness set.
Recall that a witness set W = (F,L, S) is a triple where F is a polynomial system, L a

linear space and S a (sub-)set of V(F )∩L. For many algorithms, it is necessary to construct
from a given witness set W = (F,L, S) a new witness set W ′ = (F,L′, S′) where S′ is the
result of tracking the solutions S from V(F ) ∩ L to V(F ) ∩ L′. To demonstrate this in HC,
we first sample a new random linear space and then compute a new witness set.� �

L' = rand_subspace([x,y,z,w];
# we need a linear space of codimension 1
codim = 1,
# By default we would produce an affine subspace but here we need a linear one
affine = false)

W' = witness_set(W, L')� �� �
Witness set for dimension 1 of degree 3� �

HC currently only supports these basic computations with witness sets but we have plans to
support more computations, e.g., numerical irreducible decomposition, in the future.
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9.2 Miscellaneous Details
In this section, we discuss some of the implementation and design details of HC.

9.2.1 System Representation and Evaluation

As already discussed, HC uses for the problem formulation an embedded domain-specific
language called ModelKit2. It allows to work with symbolic expressions and supports besides
the basic arithmetic operations +, −, ∗ and /, also sin, cos and log. Symbolic expressions
are well suited for the problem formulation since they preserve the original structure of the
problem. Internally, the symbolic expressions are converted to a straight-line program for
fast numerical evaluation. This is illustrated in Figure 9.4 and see, e.g., [BCS13, Sec. 4.1]
for an introduction to straight-line programs.

Figure 9.4: Transformation from symbolic expressions to a straight-line program while also performing common
subexpression elimination. On the right-hand side is the straight-line program for evaluating the last two
expressions on the left-hand side. The highlighting shows common subexpressions and the output.

Working with symbolic expressions has the advantage that the resulting straight-line
programs are substantially smaller compared to the programs constructed from polynomials
in a monomial basis. For example, the expression (x + y)5 can be evaluated with just 4
basic arithmetic operations. Compare this to the expanded expression x5 + 5x4y+ 10x3y2 +
10x2y3 + 5xy4 + y5, which requires more than 20 operations. Before converting a symbolic
expression to a straight-line program, we perform transformations to reduce the number of
operations necessary to evaluate the expression. These include the elimination of common
subexpressions and, if possible, a multivariate version of Horner’s method.

Once a symbolic expression is transformed into a straight-line program, HC supports
two evaluation methods. The first method uses Julia’s meta-programming capabilities to
automatically generate and compile a function representing the straight-line program. The
compilation results in the fastest possible evaluation of the given straight-line program but

2In the background, most symbolic operations are performed by the open source C++ library symengine.
Source code available at github.com/symengine/symengine.
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it also introduces a small constant overhead the first time a program is evaluated. Another
downside of this approach is that the compilation cost scales, in our observation, super-linear
with the size of the straight-line program. For large programs, the compilation can become
prohibitively expensive.

The second method HC supports doesn’t have any of the downsides of the compiled
approach in exchange for a slower program evaluation. It evaluates a straight-line program
by iterating over the list of operations the program consists of. For each operation in the
list, the operation is performed and the result is stored in memory. Internally, HC performs
optimizations to improve the efficiency of this approach. These include preallocation of the
necessary memory, overwriting no more needed temporary results, and reducing cache misses
by improving the memory access pattern. We refer to this approach as interpreting the
straight-line program and to the previous approach as compiling the program.

To illustrate the performance difference between the compiled and interpreted approach,
we consider the evaluation cost of the straight-line program in Figure 9.4. In HC, a straight-
line program needs to be evaluated with different arithmetic types. During the path tracking,
it is typically evaluated with complex double-precision arithmetic but as described in Chap-
ter 4 sometimes we resort to the use of extended precision arithmetic in the form of complex
double-double arithmetic. Additionally, for the certification routine described in Chapter 5 we
possibly need to use high precision complex interval arithmetic provided by the Arb [Joh17]
library via the acb arithmetic type. The different evaluation costs are shown in Table 9.5.
The results demonstrate that with complex double-precision arithmetic the interpreted ap-
proach is almost ten times slower than the compiled approach. But with extended precision,
the overhead reduces to only a factor of two. For the 256-bit complex interval arithmetic
provided by Arb, the interpreted approach is even faster since we were able to implement
efficient reuse of memory allocated by Arb. In our experience, these ratios between the
different approaches are typical for a wide range of programs.

compiled interpreted
complex double 5 ns 45 ns
complex double double 91 ns 185 ns
acb (256 bit) 2049 ns 1762 ns

Table 9.5: Cost of evaluating the straight-line program in Figure 9.4 with complex double, complex double-
double or complex interval arithmetic using the compiled or interpreted approach.

Whether it is faster to use the compiled or interpreted approach for a general solve
computation is not always known a priori. For path tracking, it is not only necessary to
evaluate a given homotopy but also to evaluate its Jacobian and to compute the local
derivatives of a solution path. All these computations involve the evaluation of different
straight-line programs. By default, HC uses for evaluating the homotopy and its Jacobian the
compiled approach and for computing the local path derivatives the interpreted approach.
In our experience, this results in a good tradeoff between compilation and run time.

Internally, the path tracking doesn’t require a homotopy that is the direct result of the
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compiled or interpreted approach. Instead, only a certain set of functions has to be imple-
mented. This allows the user to implement custom homotopies, either to optimize perfor-
mance or to express homotopies, that are not possible using the symbolic methods provided.
In HC, this is used to, e.g., optimize the performance of a parameter homotopy and to
efficiently express the composition of polynomial maps.

9.2.2 Computing Derivatives via Automatic Differentiation

HC uses the mixed-precision path tracking algorithm described in Chapter 4. For this, it is
necessary to compute for a solution path x(t) the local higher-order derivatives x(`)(t) for
` = 1, . . . , 4. As observed in Lemma 4.11, this requires for ` = 1, . . . , 4 the evaluation of

∂`+1

∂λ`+1H
(∑̀
k=0

x(k)λk, t+ λ
)
|λ=0 .

These expressions can be evaluated efficiently and numerically robust by performing higher-
order automatic differentiation. An excellent reference for automatic differentiation is the
textbook [GW08] by Griewank and Walther where higher-order automatic differentiation is
described in Chapter 13. In HC, we follow their approach.

We illustrate the computational advantage of automatic differentiation on the example
of a parameter homotopy. For this consider the homotopy H(x, t) := F (x, φ(t)) with
φ(t) = (1− t)p+ tq. The first local derivative x(1) of a path x(t) at (x0, t0) is given by

x(1)(t0) = Hx(x0, t0)−1Ht(x0, t0) = Hx(x0, t0)−1 ∂

∂t
F (x0;φ(t0)).

Using the chain rule, we obtain

∂

∂t
F (x0;φ(t0)) = Fp(x0;φ(t0))φ̇(t0) (9.2)

where Fp denotes the Jacobian with respect to the second argument. The naive computation
of ∂

∂tF (x0;φ(t0)) is done by computing the different parts in (9.2) separately. This is often
very inefficient since the Jacobian Fp is an n×mmatrix wherem is the number of parameters.
Given that it is not uncommon to have more than 100 parameters, this Jacobian quickly blows
up in size and with it the computational cost to compute (9.2). In contrast, using automatic
differentiation the Jacobian vector product (9.2) can be computed in at most three times
the number of operations of the original straight-line program [GW08, Section 4.6].

9.2.3 Tropical Endgame

Recall from Section 3.2 that a solution path x(t) = (x1(t), . . . , xn(t)) does not necessarily
converge in the limit t→ 0 or even if so, not necessarily to a regular isolated solution of our
target system. We also discussed that x(t) has a coordinate wise expansion as a convergent
Puiseux series and in Lemma 3.1 we showed that the valuation of this Puiseux expansion
allows us to better understand the limit behavior of the path. We can consider these results
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in the context of tropical geometry [MS15]. One of the main topics in tropical geometry is
the study of the valuations of solutions to polynomial systems over a valued field. This is
relevant for us since we can consider a polynomial homotopy H(x, t) also as a polynomial
system F (x) with coefficients in the field of Puiseux series C{{t}}. An alternative viewpoint
also studied in tropical geometry, see, e.g., [MS15, Sec. 1.4] and [Mik04], is to consider
families of complex varieties Vt ⊆ (C∗)n with a real parameter t and to study the limit of
the coordinatewise log-absolute value of the points in Vt as t→ 0. Considering the zero set
of H(x, t) as a family of complex varieties depending on t, the connection to our setting is
apparent.

The standard approach to compute the valuation of a solution path is due to Huber and
Verschelde [HV98]. Let us briefly recall their ideas. For this, we extend the notation from
equation (3.4) and write the i-th entry xi(t) of the path x(t) as

xi(t) = a(i) t
wi
m + b(i) t

wi+δi
m +

∑
j>wi+δi

c
(i)
j t

j
m (9.3)

where a(i), b(i) 6= 0 and δi > 0. For computing the valuations Huber and Verschelde use finite
differences of the form log |xi(t)|−log |xi(t′)|

log |t|−log |t′| = wi
m +O(t′

δi
m ) for t′ > t with t and t′ sufficiently

small. Based on this formula, they develop an extrapolation method to compute the winding
number m. This finite differences scheme is used in PHCpack [Ver99] and HOM4PS-2/3
[LLT08] to detect diverging paths.

In HC, we use an alternative approach for computing the valuations wi
m . The basic idea of

our method is to use a different formula for the valuation and combine it with higher-order
information. Compared to Huber and Verschelde, our method does not suffer from roundoff
or approximation errors introduced by applying a finite differences formula.

Given an analytic function h : D → C on an open set D ⊆ C, we define the following
differential operator

ν(h(t)) := t
d
dt log |h(t)|. (9.4)

Decomposing h(t) = u(t) +
√
−1v(t) into real and imaginary part we have the alternative

formula
ν(h(t)) = t

u(t)u̇(t) + v(t)v̇(t)
u(t)2 + v(t)2 . (9.5)

If h = (h1, . . . , hn) is a tuple of analytic functions, we write ν(h) := (ν(h1), . . . , ν(hn)).
The operator has the following important properties.

Proposition 9.1. For t > 0 sufficiently small we have

1. ν(xi(t)) = wi
m +O(t

δi
m ).

2. t d
dtν(xi(t)) = O(t

δi
m ).

3. If wi 6= 0, then ν(tẋi(t)) = wi
m +O(tδ′i/m), where δ′i ≥ δi.

4. If wi = 0, then ν(tẋi(t)) = δi
m +O(t1/m) .
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Proof. We first prove item (1). For this, we rewrite the formula in (9.3) as

xi(t) = a(i) t
wi
m ·

(
1 + β(i) t

δi
m ·

(
1 +

∑
j>0

γ(i) t
j
m
))
,

where β(i) = b(i)

a(i) and γ(i) = c(i)

b(i)
. Recall that 0 < t ≤ 1. Taking the logarithm of the

absolute value on both sides of this yields

log |xi(t)| = log |a(i)|+ wi
m

log t+ log
∣∣∣1 + β(i) t

δi
m ·

(
1 +

∑
j>0

γ(i) t
j
m
)∣∣∣.

Taking derivatives on both sides and multiplying by t yields

ν(xi(t)) = t
d
dt log |xi(t)| =

wi
m

+ ν(
∣∣1 + β(i) t

δi
m · (1 +

∑
j>0

γ(i) t
j
m )
∣∣).

Applying (9.5) to the last term in this equation shows that it has order O(t
δi
m ). This finishes

the proof for item (1), and it also implies item (2).
For the remaining items, we derive from equation (9.3) the following formula for tẋ(t):

tẋ(t) = wi
m
a(i) t

wi
m + wi + δi

m
b(i) t

wi+δi
m +

∑
j>wi+δi

j

m
c

(i)
j t

j
m .

We can now argue as above. If wi 6= 0, then the leading term is wi
m a(i) t

wi
m and the second

term is of order O(t
wi+δi
m ). Item (1) applied to this case shows (3). Case (4) is shown

analogously. This finishes the proof.

Remark 9.2. The lemma is closely related to the limit process limt→0
log |xi(t)|

log |t| = wi
m known

as Maslov dequantization that relates the non-Archimedean valuation log | · | with the
Archimedean valuation val(·); see, e.g., [dW17]. In [HS14], this is used to compute the
vertices of the Newton polytope of a polynomial system using numerical methods.

All the differential operators in Proposition 9.1 can be evaluated using formula (9.5)
and the local derivatives x(1)(t), x(2)(t) and x(3)(t). These derivatives can be computed
efficiently and accurately by the automatic differentiation techniques described in the previous
subsection.

A challenge in using the valuation of a solution path x(t) is that the results in Proposi-
tion 9.1 are only valid for sufficiently small t. Unfortunately, we did not find a method to
quantify “sufficient small” and instead have to rely on heuristics.

To detect diverging paths, we make use of the higher-order derivatives. Let us denote the
relative error between ν(xi(t)) and ν(tẋi(t)) by

∆ := |ν(xi(t))− ν(tẋi(t))|
|ν(xi(t))|

.
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Following the second item of Proposition 9.1, we also denote relative and absolute approxi-
mation error of ν(xi(t)) and ν(tẋi(t)) by

εabs = max
{
t

d
dtν(xi(t)), t

d
dtν(tẋi(t))

}
, εrel = εabs

|ν(xi(t))|
. (9.6)

If max(∆, εrel) is smaller than a given threshold, then this indicates that the valuation doesn’t
change much anymore and that t is sufficiently small. However, this is not always the case
and it is possible to construct adverse scenarios where this heuristic fails.

In addition to the valuation, we also consider during the endgame the matrix condition
number

κ(t) := ‖Hx(x(t), t)−1‖∞‖Hx(x(t), t)‖∞.

κ(t) has the property that limt→0 κ(t) < ∞, if and only if x(t) converges to a regular
solution; see, e.g., [MSW92b]. It is therefore suitable to detect whether the solution path
ends in a singular solution. A problem with κ(t) is that it is sensitive to the scaling of the
rows of Hx(x(t), t). In particular, a bad scaling of the homotopy H(x, t) can therefore result
in artificially large condition numbers. An alternative is the componentwise relative condition
number cond(t) = minD ‖(DHx(x(t), t))−1‖∞‖DHx(x(t), t)‖∞ where the minimum is over
all diagonal matrices; see [Hig02, Chapter 7]. However, this is has the undesirable property
that it is possible that cond(τ) is small for all τ > 0 but cond(0) =∞, e.g., if a single row
of the Jacobian converges to zero. A good balance we found between these two is to use

κD(t) := ‖DHx(x(t), t)−1‖∞‖DHx(x(t), t)‖∞

where D = arg minD ‖(DHx(x(τ), τ))−1‖∞‖DHx(x(τ), τ)‖∞ for some fixed τ > 0.
The endgame in HC is based on these heuristics but with small modifications to account

for various ill-behaved situations. For the exact heuristics we refer to the source code of HC.

9.3 Impact
We have developed HC to allow engineers, researchers, and scientists to solve hard problems in
nonlinear algebra without the need to first become an expert in numerical nonlinear algebra.
Therefore, the metric on which the significance of the software should be judged is whether it
is used to solve such problems. In particular, we do not attempt to provide a comprehensive
set of benchmarks to compare HC against other packages. Benchmarks tend to only compare
the performance of the general homotopies, e.g., total degree or polyhedral homotopy. But
many applications are solved using the monodromy method and parameter homotopies and
benchmarks typically do not reflect this.

While we don’t provide benchmarks, we believe that a comprehensive set of example
problems is very useful for the development of numerical nonlinear algebra software. A wide
range of examples helps to expose weaknesses in the software that then can be improved.
In the following, we want to give an example of a polynomial system that helped in the
development of HC.
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Example. The following system of three polynomials in three variables was communicated
to us by Mohab Safey El-Din.

(−9091098778555951517x3y4z2 + 5958442613080401626y2z7 + 17596733865548170996x2z6−
17979170986378486474xyz6 − 2382961149475678300x4y3 − 15412758154771986214xy3z3 + 133,
− 10798198881812549632x6y3z − 11318272225454111450xy9 − 14291416869306766841y9z−
5851790090514210599y2z8 + 15067068695242799727x2y3z4 + 7716112995720175148x3yz3 + 171,
13005416239846485183x7y3 + 4144861898662531651x5z4 − 8026818640767362673x6−
6882178109031199747x2y4 + 7240929562177127812x2y3z + 5384944853425480296xyz4 + 88)

(9.7)

The system has 693 regular isolated solutions which agrees with its mixed volume. The
Bézout bound of the system is 900. Due to the very small relative size of the constant
coefficients, the system has many badly scaled solutions. This requires extra care in the
path tracking and the endgame. This system was communicated to use since HC version 1.x
was not able to solve the system correctly. Improvements to the endgame in HC 2.0 and
the mixed-precision path tracking algorithm allow us to now solve the system correctly. In
Table 9.6 we compare HC against other homotopy continuation solvers. The table shows that
HC is the only solver that is able to solve the system correctly. NAG4M2 and Bertini report
too many solutions and PHCpack misses solutions.

NAG4M2 Bertini PHCpack HC

original solutions 0 x 681 693
runtime 0.5s x 2.0s 0.4s

scaled solutions 757 704 682 693
runtime 9.6s 37.6s 2.0s 0.4s

Table 9.6: Results for solving the system (9.7) with different homotopy continuation solvers. Bertini and
NAG4M2 were only able to produce solutions for the system after diving the system by the largest coefficient
occuring in the system. The result for this scaled system are depicted in the scaled row. NAG4M2 and Bertini
used a total degree homotopy to solve the system. PHCpack and HC used a polyhedral homotopy.

Finally, we demonstrate the impact of HC in the research community. For this, we show
a variety of recent articles that use HC.

In [ST20], Sturmfels and Telen relate scattering amplitudes in particle physics to maximum
likelihood estimation for discrete models in algebraic statistics. Using HC, they compute and
certify all 188,112 critical points of a certain statistical model in 47 variables in a few
minutes using a parameter homotopy. The symbolic modeling in HC allowed them to avoid
clearing denominators and to directly work with rational functions. This greatly improved
the performance and robustness of the computations.

In [LZBL20], Lindberg, Zachariah, Boston, and Lesieutre study the distribution of the
number of real solutions to the power flow equations over varying electrical parameters.
This study is performed using a combination of the monodromy method and the parameter
homotopy implementation in HC. In [LBL20], Lindberg, Boston, and Lesieutre demonstrate
how the monodromy method allows exploiting the symmetry in the power flow equations.
This substantially decreases the computational cost. Note that the monodromy method in
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HC makes it very easy to exploit symmetry3. Using HC, they solve the power flow equations
for the cyclic graph on 20 vertices. This system has 1,847,560 complex solutions but ignoring
the trivial solutions and up to symmetry it has 330,818. This example is the largest network
to the authors’ knowledge for which all solutions to the power flow equations have been
found for a power system model.

In [BKK20], Brysiewicz, Kozhasov and Kummer classify transversal quintic spectrahedra
by the location of 20 nodes on the respective real determinantal surface of degree 5. They
identify 65 classes of such surfaces and find an explicit representative in each of them. Using
HC, they compute explicit witnesses of spectrahedra for each combinatorial type. The com-
putation for each combinatorial result is certified using the certification routine implemented
in HC.

In [DTWY20], Duff, Telen, Walker, and Yahl introduce the Cox homotopy algorithm for
solving a sparse system of polynomial equations on an associated compact toric variety. Their
numerical experiments combine Polymake.jl [KLT20] with HC. This is just one example of
the possibilities for combining state of the art methods in polyhedral geometry with numerical
nonlinear algebra through Julia.

In [LSZ20], Lelièvre, Stoltz, and Zhang propose new Markov Chain Monte Carlo (MCMC)
algorithms to sample probability distributions on submanifolds. These are some of the first
MCMC methods that allow working with submanifolds consisting of multiple connected
components. In the case of algebraic submanifolds, their implementation relies on HC to
guarantee that the correct probability distribution is sampled.

Further notable work using HC includes “Sampling and homology via bottlenecks” [DREG20],
“Tangent Quadrics in Real 3-Space” [BFS20], “Asymptotics of degrees and ED degrees of
Segre products” [OSV20], “Dynamics of ERK regulation in the processive limit” [COST20],
“Moment Ideals of Local Dirac Mixtures” [GKW20], “Autocovariance varieties of moving
average random fields” [AP20] and “Logarithmic Voronoi cells” [AH21].

It is a great pleasure to see this diverse and growing set of researchers using HC and we
hope that in the future it becomes a valuable tool for even more researchers.

9.4 Conclusion
In this chapter, we presented the software package HomotopyContinuation.jl for the
numerical solution of polynomial systems. We demonstrated its functionality and discussed
some of its implementation and design details. The software was of significant importance for
this thesis since the computational results from Chapter 2, 6, 7, and 8 were all obtained with
HomotopyContinuation.jl. We also showed the impact of HomotopyContinuation.jl
on the broader research community by highlighting several recent articles where it played a
critical role.

3This can be done via the group_action option for monodromy_solve.
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10 Conclusion

In this thesis, we worked on different aspects of numerical nonlinear algebra. For the numeri-
cal solution of polynomial systems, we focused on the homotopy continuation method where
the core numerical computation is tracking a solution path. We presented in Chapter 4 a new
mixed-precision path tracking algorithm specifically designed for the demands of polynomial
homotopy continuation methods. We demonstrated that this new algorithm is efficient while
still being robust enough to handle numerically challenging situations.

Important for the use of numerical nonlinear algebra in mathematical proofs is the possi-
bility to certify that computed approximate solutions of a polynomial system correspond to
true (distinct) solutions of the system. We presented in Chapter 5 an implementation of a
certification routine based on interval arithmetic and Krawczyk’s method. We demonstrated
that our method outperforms the existing state of the art alphaCertified by multiple
orders of magnitude. An example where we used certification was in Chapter 2 Steiner’s
conic problem. There, we could reduce the certification time for our fully real instance to 3
seconds from the previous 36 hours with alphaCertified.

The new path tracking algorithm and the certification routine are both implemented
in the software package HomotopyContinuation.jl that the author has developed to-
gether with Paul Breiding since late 2017. We presented in Chapter 9 the functionality of
HomotopyContinuation.jl and shared some of its implementation and design details. We
also demonstrated in Chapter 9 the significant impact of HomotopyContinuation.jl on
the research community.

Besides Steiner’s conic problem, we presented in this thesis three applications of numerical
nonlinear algebra. All applications relied on HomotopyContinuation.jl to perform nec-
essary computations. In the first application, we computed in Chapter 6 the degree of the
orbit closure of the action of the projective linear group PGL(C, 4) on cubic surfaces param-
eterized by points in P19. The result was 96120. The second application was in Chapter 7
the problem of maximum likelihood estimation for models of Gaussians whose covariance
matrices lie in a given linear space. Using numerical nonlinear algebra, we computed the ML
degree and dual ML degree for various models of linear covariance matrices. The last appli-
cation was in Chapter 8 the study of tensegrity frameworks made from rigid bars and elastic
cables. We used numerical nonlinear algebra to sample the semi-algebraic “catastrophe set”
that characterizes a region of the parameter space that can trigger sudden large-scale shape
changes.
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